Skip to main content
Log in

Statistical Moment Analysis of Hepatobiliary Transport of Phenol Red in the Perfused Rat Liver

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

A new experimental system was applied to study hepatobiliary transport of drugs. Rat livers were perfused using a single-pass technique, and phenol red was momentarily introduced to this system from the portal side. Outflow dilution patterns of phenol red were analyzed using statistical moment theory, and kinetic parameters of hepatic distribution and elimination of phenol red were calculated from moments, namely, the hepatic extraction ratio (E i) and elimination rate constant (k el,i). A larger distribution volume (V i) was obtained for phenol red than for 131I-human serum albumin (HSA) and 51Cr-red blood cells (RBC), indicating its extravascular diffusivity. The biliary excretion of conjugated phenol red was delayed relative to that of the free agent. The larger biliary mean transit time (t bile,conj.) represents the processes of biliary transport and intrahepatic metabolism. Further, the effects of dose and perfusion temperature on the hepatobiliary transport of phenol red were determined. With high doses or low perfusion temperatures (20 and 27°C), E i, k el,i, and intrinsic clearance (CLint,i) of phenol red and biliary recovery of free and conjugated phenol red (F bile,free, F bile,conj) significantly decreased. The temperature-dependent and saturable processes in hepatic uptake, metabolism, and biliary excretion of phenol red were assessable to moment analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Kakutani, K. Yamaoka, M. Hashida, and H. Sezaki. J. Pharmacokinet. Biopharm. 13:609–631 (1985).

    Google Scholar 

  2. G. E. Mortimore, F. Tietze, and D. Stetten. Diabetes 8:307–314 (1959).

    Google Scholar 

  3. L. G. Hart and L. S. Shanker. Proc. Soc. Exp. Biol. Med. 123:433–435 (1966).

    Google Scholar 

  4. K. Yamaoka, T. Nakagawa, and T. Uno. J. Pharmacokinet. Biopharm. 6:547–558 (1978).

    Google Scholar 

  5. D. J. Cutler, J. Pharm. Pharmacol. 30:476–478 (1978).

    Google Scholar 

  6. M. Rowland, L. Z. Benet, and G. G. Graham. J. Pharmacokinet. Biopharm. 1:123–136 (1973).

    Google Scholar 

  7. K. S. Pang and M. Rowland. J. Pharmacokinet. Biopharm. 5:625–653 (1977).

    Google Scholar 

  8. K. S. Pang and M. Rowland. J. Pharmacokinet. Biopharm. 5:655–680 (1977).

    Google Scholar 

  9. K. S. Pang and M. Rowland. J. Pharmacokinet. Biopharm. 5:681–699 (1977).

    Google Scholar 

  10. Y. R. Stollman, U. Gartner, L. Theilman, N. Ohmi, and A. W. Wolkoff. J. Clin. Invest. 72:718–723 (1983).

    Google Scholar 

  11. A. Blom, A. H. J. Scaf, and D. K. F. Meijer. Biochem. Pharmacol. 31:1553–1565 (1982).

    Google Scholar 

  12. R. Henry, B. Cueni, J. Bircher, and G. Paumgartner. Naunyn-Schmiedeberg Arch. Pharmacol. 277:297–304 (1973).

    Google Scholar 

  13. D. L. Gumucio, J. J. Gumucio, J. A. P. Wilson, C. Cutter, M. Krauss, R. Caldowell, and E. Chen. Am. J. Physiol. 246:G68–G95 (1984).

    Google Scholar 

  14. K. Takahashi, Y. Higashi, and N. Yata. J. Pharmacobio-Dyn. 9:570–577 (1986).

    Google Scholar 

  15. A. R. Fritzberg and J. Reichen. J. Pharm. Pharmacol. 37:919–922 (1985).

    Google Scholar 

  16. M. H. Finck, J. Reichen, J. M. Vierling, T. M. Kloppel, and W. R. Brown. Am. J. Physiol. 248:G450–G455 (1985).

    Google Scholar 

  17. C. A. Goresky and G. G. Bach. Ann. N.Y. Acad. Sci. 18:18–47 (1970).

    Google Scholar 

  18. J. B. Bassingthwaight. Fed. Proc. 41:3040–3044 (1982).

    Google Scholar 

  19. D. L. Yudilevich and G. E. Mann. Fed. Proc. 41:3045–3053 (1982).

    Google Scholar 

  20. M. Silverman and C. Trainor. Fed. Proc. 41:3054–3060 (1982).

    Google Scholar 

  21. M. S. Roberts and M. Rowland. J. Pharmacokinet. Biopharm. 14:227–260 (1986).

    Google Scholar 

  22. E. L. Forker and B. Luxon. Am. J. Physiol. 235:E648–E660 (1978).

    Google Scholar 

  23. R. A. Weisiger, C. M. Mendel, and R. R. Cavalieri. J. Pharm. Sci. 75:233–237 (1986).

    Google Scholar 

  24. B. F. Scharschmidt, J. G. Waggoner, and P. D. Berk. J. Clin. Invest. 56:1280–1292 (1975).

    Google Scholar 

  25. A. Blom, K. Keulemans, and D. K. F. Meijer. Biochem. Pharmacol. 30:1809–1816 (1981).

    Google Scholar 

  26. W. A. Dunn, D. A. Wall, and A. L. Hubbard. Meth. Enzymol. 98,225–241 (1983).

    Google Scholar 

  27. T. Kakutani, Y. Suematsu, W. Y. Cheah, E. Sumimoto, and M. Hashida. Chem. Pharm. Bull. 35:4898–4906 (1987).

    Google Scholar 

  28. R. Atsumi, K. Endo, T. Kakutani, Y. Takakura, M. Hashida, and H. Sezaki. Cancer Res. 47:5546–5551 (1987).

    Google Scholar 

  29. T. Kakutani, E. Sumimoto, and M. Hashida. J. Pharmacokinet. Biopharm. 16:129–149 (1988).

    Google Scholar 

  30. T. Kakutani, R. Atsumi, E. Sumimoto, and M. Hashida. Chem. Pharm. Bull. 35:4907–4914 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishida, K., Tonegawa, C., Kakutani, T. et al. Statistical Moment Analysis of Hepatobiliary Transport of Phenol Red in the Perfused Rat Liver. Pharm Res 6, 140–146 (1989). https://doi.org/10.1023/A:1015980525940

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015980525940

Navigation