Skip to main content
Log in

Localized Enhancements of Energetic Proton Fluxes at Low Altitudes in the Subauroral Region and Their Relation to the Pc1 Pulsations

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

A special kind of variation of energetic proton fluxes inside the anisotropic precipitation zone is considered using the data from the low-altitude satellites NOAA/TIROS. The variation is characterized by a localized (within ∼1° of latitude) enhancement of >30 keV protons, both trapped at the spacecraft altitude and precipitating. A close correlation is shown between the morphological characteristics of the proton precipitation and the Pc1 pulsations observed by the ground-based geophysical observatory Sodankylä. The probability of observation of the Pc1 pulsation by a ground-based station decreases with increasing MLT distance between this station and the projection of the satellite detecting the precipitating protons. The Pc1 pulsation frequency decreases as the proton burst latitude increases. These findings support the ion-cyclotron mechanism of the Pc1 production suggesting that both wave generation and particle scattering occur in the source region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Cornwall, J.M., Hilton, H.H., and Mezira, P.F., Observation of Precipitating Protons in the Energy Range 2.5 keV < E < 200 keV, J. Geophys. Res., 1971, vol. 76, p. 5220.

    Google Scholar 

  2. Kovrazhkin, R.A., Pitch-Distribution of Protons Precipitating from the Auroral Radiation Region in the Range of Hundreds of keV, J. Atmos. Terr. Phys., 1971, vol. 33, p. 1099.

    Google Scholar 

  3. Mizera, P.F., Observations of Precipitating Protons with Ring Current Energies, J. Geophys. Res., 1974, vol. 79, p. 581.

    Google Scholar 

  4. Hauge, R. and Soraas, F., Precipitation of > 115 keV Protons in the Evening and Forenoon Sectors in Relation to the Magnetic Activity, Planet. Space Sci., 1975, vol. 23, p. 1141.

    Google Scholar 

  5. Soraas, F., Lundbald, J.A., and Hultqvis, B., On the Energy Dependence of the Ring Current Proton Precipitation, Planet. Space Sci., 1977, vol. 25, p. 757.

    Google Scholar 

  6. Kudela, K., Dobrovolska, B., Zakharov, A.V., and Kuznetsova, V.A., 440 keV Proton Precipitation at Middle Latitudes during the Recovery Phase of Magnetic Storms, Planet. Space Sci., 1977, vol. 25, p. 1186.

    Google Scholar 

  7. Altyntseva, V.I., Dronov, A.V., Kovtyukh, A.S., et al., Variations of Intensity and Anisotropy of Precipitating Particles with Energies higher than 30 keV, Kosm. Issled., 1982, vol. 20, no. 4, p. 552.

    Google Scholar 

  8. Gvozdevskii, B.B. and Sergeev, V.A., Scattering by the Current Sheet as a Possible Mechanism of Precipitation for Auroral Protons, Geomagn. Aeron., 1995, vol. 35, no. 4, p. 151.

    Google Scholar 

  9. Gvozdevsky, B.B., Sergeev, V.A., and Mursula, K., Long Lasting Energetic Proton Precipitation in the Inner Magnetosphere after Substorms, J. Geophys. Res., 1997, vol. 102, p. 24333.

    Google Scholar 

  10. Yahnina, T.A., Gvozdevskii, B.B., and Yahnin, A.G., Anisotropic Precipitation of Energetic Protons from the Inner Magnetosphere, Kosm. Issled., 1999, vol. 37, no. 1, pp. 44–49.

    Google Scholar 

  11. Sergeev, V.A., Sazhina, E.M., Tsyganenko, N.A., et al., Pitch-Angle Scattering of Energetic Protons in the Magnetotail Current Sheet as the Dominant Source of Their Isotropic Precipitation into the Nightside Ionosphere, Planet. Space Sci., 1983, vol. 31, p. 1147.

    Google Scholar 

  12. Cornwall, J.M., Coroniti, F.V., and Torne, R.M., Turbulent Loss of Ring Current Protons, J. Geophys. Res., 1970, vol. 75, p. 4699.

    Google Scholar 

  13. Williams, D.J. and Lyons, L.R., The Proton Ring Current and Its Interaction with Plasmapause: Storm Recovery Phase, J. Geophys. Res., 1974, vol. 79, p. 4195.

    Google Scholar 

  14. Bespalov, P.A., Demekhov, A.G., Grafe, A., and Trakhtengerts, V.Yu., On the Role of Collective Interactions in Asymmetric Ring Current Formation, Ann. Geophys., 1994, vol. 12, no. 5, p. 422.

    Google Scholar 

  15. Soraas, F. and Berg, L.E., Correlated Satellite Measurements of Proton Precipitation and Plasma Density, J. Geophys. Res., 1974, vol. 79, no. 34, p. 5171.

    Google Scholar 

  16. Yahnina, T.A., Titova, E.E., and Yahnin, A.G., Localized Precipitation of Energetic Protons at Subauroral Latitudes, Proceedings of XXI Apatity Seminar “Physics of Auroral Phenomena,” Apatity, 1998, pp. 113–117.

  17. Gintsburg, M.A., Ob odnom novom mekhanizme vozniknoveniya mikropul'satsii zemnogo magnitnogo polya, Izv. Akad. Nauk SSSR, Ser. Geofiz., 1961, no. 11, p. 1679.

  18. Cornwall, J.M., Cyclotron Instabilities and Electromagnetic Emission in the Ultra Low Frequency Ranges, J. Geophys. Res., 1965, vol. 70, p. 61.

    Google Scholar 

  19. Guglielmi, A.V., MGD volny v okolozemnoi plazme (MHD Waves in the Near Terrestrial Plasma), Moscow: Nauka, 1979.

    Google Scholar 

  20. Young, D.T., Perraut, S., Roux, A., et al., Wave-Particle Interactions Near Observed on GEOS 1 and 2:1. Propagation of Ion Cyclotron Waves in He+-Rich Plasma, J. Geophys. Res., 1981, vol. 86, p. 6755.

    Google Scholar 

  21. Gomberoff, L. and Neira, R., Convective Growth Rate of Ion Cyclotron Waves in a H+/He+ and H+/He++/O+ Plasma, J. Geophys. Res., 1983, vol. 88, p. 2170.

    Google Scholar 

  22. Kozyra, J.U., Cravens, T.E., Nagy, A.F., et al., Effects of Energetic Heavy Ions on Electromagnetic Ion Cyclotron Wave Generation in the Plasmapause Region, J. Geophys. Res., 1984, vol. 89, p. 2217.

    Google Scholar 

  23. Trakhtengerts, V.Y., Demekhov, A.G., Polyakov, S.V., et al., A Mechanism of Pc1 Pearl Formation Based on the Alfven Sweep Maser, J. Atmos. Solar.-Terr. Phys., 2000, vol. 62, p. 231.

    Google Scholar 

  24. Mende, S.B., Arnoldi, R.L., Cahill, L.J., Jr., et al., Correlation between ?4278-Å Optical Emissions and Pc1 Pearl Event Observed at Simple Station, Antarctica, J. Geophys. Res., 1980, vol. 85, p. 1194.

    Google Scholar 

  25. Arnoldy, R.L., Levis, P.V., Jr., and Cahill, L.J., Jr., Polarization of Pc1 and IPDP Pulsations Correlated with Particle Precipitation, J. Geophys. Res., 1979, vol. 84, p. 7091.

    Google Scholar 

  26. Pikkarainen, T., Kangas, J., Ranta, H., et al., Riometer Absorption Events in the Evening-to-Afternoon Sector of the Auroral and Sub-Auroral Zone and Movements of the IPDP Source, J. Atmos. Terr. Phys., 1986, vol. 48, p. 585.

    Google Scholar 

  27. Fukunishi, H., Toya, T., Koike, K., et al., Classification of Hydromagnetic Emission Based on Frequency-Time Spectra, J. Geophys. Res., 1981, vol. 86, p. 9029.

    Google Scholar 

  28. Hill, V.D., Evans, D.S., and Sauer, H.H., TIROS/NOAA Satellites Space Environment Monitor, Archive Tape Documentation, NOAA Tech. Mem. ERL SEL-71, Boulder: Environs. Res. Lab., 1985.

    Google Scholar 

  29. Kangas, J., Guglielmi, A., and Pokhotelov, O., Morphology and Physics of Short-Period Magnetic Pulsations- a Review, Space Sci. Rev., 1998, vol. 83, p. 435.

    Google Scholar 

  30. Belyaev, P.P., Bosinger, T., Isaev, S.V., et al., First Evidence at High Latitudes for the Ionospheric Alfven Resonator, J. Geophys. Res., 1999, vol. 104, p. 4305.

    Google Scholar 

  31. Erlandson, R.E. and Anderson, B.J., Pc1 Waves in the Ionosphere: a Statistical Study, J. Geophys. Res., 1996, vol. 101, p. 7843.

    Google Scholar 

  32. Erlandson, R.E., Mursula, K., and Bosinger, T., Simultaneous Ground-Satellite Observations of Structured Pc1 Pulsations, J. Geophys. Res., 1996, vol. 101, p. 27149.

    Google Scholar 

  33. Heacock, R.R. and Akasofu, S.-I., Periodically Structured Pc1 Micropulsations during the Recovery Phase of Intense Magnetic Storms, J. Geophys. Res., 1973, vol. 78, p. 5524.

    Google Scholar 

  34. Fraser, B.J., Kemp, W.J., and Webster, D.J., Ground-Satellite Study of a Pc1 Ion Cyclotron Wave Event, J. Geophys. Res., 1989, vol. 94, p. 11855.

    Google Scholar 

  35. Erlandson, R.E., Zanetti, L.J., Potemra, T.A., et al., Viking Magnetic and Electric Field Observations of Pc1 Waves at High Latitudes, J. Geophys. Res., 1990, vol. 95, p. 5941.

    Google Scholar 

  36. Anderson, B.J., Erlandson, R.E., and Zanetti, L.J., A Statistical Study of Pc 1-2 Magnetic Pulsations in the Equatorial Magnetosphere. 1. Equatorial Occurrence Distributions, J. Geophys. Res., 1992, vol. 97, p. 3075.

    Google Scholar 

  37. Baransky, L., Golikov, Yu., Feygin, F., et al., Role of the Plasmapause and Ionosphere in the Generation and Propagation of Pearl Pulsations, J. Atmos. Terr. Phys., 1981, vol. 43, p. 875.

    Google Scholar 

  38. Carpenter, D.L., Giles, B.L., Chappell, C.R., et al., Plasmasphere Dynamics in the Duskside Bulge Region: a New Look at on Old Topic, J. Geophys. Res., 1993, vol. 98, p. 19243.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yahnina, T.A., Yahnin, A.G., Kangas, J. et al. Localized Enhancements of Energetic Proton Fluxes at Low Altitudes in the Subauroral Region and Their Relation to the Pc1 Pulsations. Cosmic Research 40, 213–223 (2002). https://doi.org/10.1023/A:1015968702640

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015968702640

Keywords

Navigation