Advertisement

Pharmaceutical Research

, Volume 6, Issue 2, pp 105–118 | Cite as

Covalent and Noncovalent Protein Binding of Drugs: Implications for Hepatic Clearance, Storage, and Cell-Specific Drug Delivery

  • Dirk K. F. Meijer
  • Peter van der Sluijs
Article

Abstract

This review deals with the mechanisms by which the liver disposes of drugs that are covalently or noncovalently associated with proteins. Many drugs bind to plasma proteins such as albumin (mainly anionic compounds) and α1-acid glycoprotein (cationic compounds). Nevertheless, the liver is able to clear such drugs efficiently from the circulation because of intrahepatic dissociation of the drug-protein complex. This clearance may involve spontaneous dissociation because of progressive removal of the unbound drug during liver passage, a process that can be rate limiting in hepatic uptake. Alternatively, the porous endothelial lining of the hepatic sinusoids may allow extensive surface interactions of the drug–protein complexes with hepatocytes, leading to facilitation of drug dissociation. Binding to plasma proteins and intracellular proteins in the cytoplasm or cell organelles is an important factor determining the hepatic storage and elimination rate of drugs. Drugs noncovalently associated with glycosylated proteins, which can be endocytosed by various liver cells, are not co-endocytosed with such proteins. However, covalently bound drugs can be internalized by receptor-mediated endocytosis, which permits specific targeting to hepatocytes, endothelial cells, Kupffer cells, and lipocytes by coupling to different glycoproteins that are recognized on the basis of their terminal sugar. The endocytosed drug–carrier complex is routed into endosomes and lysosomes, where the active drug is liberated by cleavage of acid-sensitive linkages or proteolytic degradation of peptide linkers. This concept has been applied to antineoplastic, antiparasitic, and antiviral drugs.

protein bindings of drugs hepatic clearance intrahepatic dissociation of drug–protein complex glycoproteins as drug carriers drug targeting to the liver receptor-mediated endocytosis covalent protein binding of drugs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. L. Campra and T. B. Reynolds. In I. Arias, H. Popper, D. Schachter, and D. A. Shafritz (eds.), The Liver, Biology and Pathobiology, Raven Press, New York, 1982, pp. 627–645.Google Scholar
  2. 2.
    A. M. Rappaport, Z. J. Borowy, W. M. Lougheed, and W. N. Lotto. Anat. Rec. 119:11–27 (1954).Google Scholar
  3. 3.
    R. G. Thurman and F. C. Kauffman. Hepatology (Baltimore) 5:144–151 (1985).Google Scholar
  4. 4.
    K. Jungerman and N. Katz. Hepatology (Baltimore) 2:385–395 (1982).Google Scholar
  5. 5.
    J. J. Gumucio. Am. J. Physiol. 244:G578–G582 (1983).Google Scholar
  6. 6.
    G. M. M. Groothuis, M. J. Hardonk, K. K. Keulemans, P. Nieuwenhuis, and D. K. F. Meijer. Am. J. Physiol. 243:G455–G462 (1982).Google Scholar
  7. 7.
    I. Braakman, G. M. M. Groothuis, and D. K. F. Meijer. Hepatology 7:849–855 (1987).Google Scholar
  8. 8.
    E. R. Weibel, W. Staubli, H. R. Gragi, and F. A. Hess. J. Cell. Biol. 42:68–91 (1969).Google Scholar
  9. 9.
    A. Blouin, R. P. Bolender, and E. R. Weibel. J. Cell Biol. 72:441–455 (1977).Google Scholar
  10. 10.
    E. Wisse, R. de Zanger, and R. Jacobs. In D. L. Knook and E. Wisse (eds.), Sinusoidal Liver Cells, Elsevier, Amsterdam, 1982, pp. 61–67.Google Scholar
  11. 11.
    R. de Zanger and E. Wisse. In D. L. Knook and E. Wisse (eds.), Sinusoidal Liver Cells, Elsevier, Amsterdam, 1982, pp. 69–76.Google Scholar
  12. 12.
    P. Stahl and A. L. Schwartz. J. Clin. Invest. 77:657–662 (1986).Google Scholar
  13. 13.
    J. L. Goldstein, M. S. Brown, R. G. W. Anderson, D. W. Russell, and W. J. Schneider. Annu. Rev. Cell Biol. 1:1–39 (1985).Google Scholar
  14. 14.
    C. J. Steer and G. Ashwell. In H. Popper and F. Schaffner (eds.), Progress in Liver Diseases, Vol. 8, Grune and Stratton, New York, 1986, pp. 99–123.Google Scholar
  15. 15.
    A. L. Schwartz. C.R.C. Crit. Rev. Biochem. 16:207–223 (1984).Google Scholar
  16. 16.
    T. C. Wileman, C. Harding, and P. Stahl. Biochem. J. 232:1–14 (1985).Google Scholar
  17. 17.
    G. Ashwell and J. Harford. Annu. Rev. Biochem. 51:531–544 (1982).Google Scholar
  18. 18.
    H. J. Geuze, J. W. Slot, G. J. A. M. Strous, K. von Figura, A. Hasilik, and A. L. Schwartz. Cell (Cambridge) 37:195–204 (1984).Google Scholar
  19. 19.
    I. Mellman, R. Fuchs, and A. Helenius. Annu. Rev. Biochem. 55:663–700 (1986).Google Scholar
  20. 20.
    G. J. Schwartz and Q. Al-Awqati. Annu. Rev. Physiol. 48:153–161 (1986).Google Scholar
  21. 21.
    F. G. M. Russel, J. G. Weitering, R. Oosting, G. M. M. Groothuis, M. J. Hardonk, and D. K. F. Meijer. Gastroenterology 85:225–234 (1985).Google Scholar
  22. 22.
    R. R. Townsend, D. A. Wall, A. L. Hubbard, and Y. C. Lee. Proc. Natl. Acad. Sci. USA 81:466–470 (1984).Google Scholar
  23. 23.
    N. F. La Russo. Am. J. Physiol. 247:G199–G205 (1984).Google Scholar
  24. 24.
    P. van der Sluijs, I. Braakman, D. K. F. Meijer, and G. M. M. Groothuis. Hepatology 8:1521–1529 (1988).Google Scholar
  25. 25.
    S. Irie and M. Tavassoli. Biochem. Biophys. Res. Comm. 140:94–100 (1986).Google Scholar
  26. 26.
    M. Tavassoli, T. Kishimoto, and M. Kataoka. J. Cell Biol. 102:1298–1303 (1986).Google Scholar
  27. 27.
    T. F. Blaschke. Protein binding and kinetics of drugs in liver disease. Clin. Pharmacokinet. 2:32–44 (1977).Google Scholar
  28. 28.
    M. Rowland. Clin. Pharmacokin. 9:10–17 (1984).Google Scholar
  29. 29.
    K. M. Piafsky. Clin. Pharmacokinet. 5:24662 (1980).Google Scholar
  30. 30.
    Th. N. Tozer. In L. Z. Benet et al. (eds.), Pharmacokinetic Basis for Drug Treatment, Raven Press, New York, 1984, pp. 173–193.Google Scholar
  31. 31.
    D. K. F. Meijer, C. Neef, and G. M. M. Groothuis. In D. D. Breimer and P. Speiser (eds.), Topics in Pharmaceutical Sciences, Elsevier, Amsterdam, 1983, pp. 167–189.Google Scholar
  32. 32.
    D. K. F. Meijer. J. Hepatol. 4:259–268 (1987).Google Scholar
  33. 33.
    P. van der Sluijs and D. K. F. Meijer. J. Pharmacol. Exp. Ther. 234:703–707 (1985).Google Scholar
  34. 34.
    G. R. Wilkinson and D. G. Shand. Clin. Pharmacol. Ther. 18:377–390 (1975).Google Scholar
  35. 35.
    D. K. F. Meijer, R. J. Vonk, K. Keulemans, and J. G. Weitering. J. Pharmacol. Exp. Ther. 202:8–21 (1977).Google Scholar
  36. 36.
    D. K. F. Meijer, A. Blom, J. G. Weitering, and R. Hornsveld. J. Pharmacokinet. Biopharm. 12:43–65 (1984).Google Scholar
  37. 37.
    H. Grausz and R. Schmid. N. Engl. J. Med. 284:1403–1406 (1971).Google Scholar
  38. 38.
    M. Inoue. Hepatology (Baltimore) 5:892–898 (1985).Google Scholar
  39. 39.
    A. Blom, K. Keulemans, and D. K. F. Meijer. Biochem. Pharmacol. 30:1809–1816 (1981).Google Scholar
  40. 40.
    R. H. Levy and T. A. Moreland. Clin. Pharmacokinet. 9:1–9 (1984).Google Scholar
  41. 41.
    A. Blom, A. H. J. Scaf, and D. K. F. Meijer. Biochem. Pharmacol. 31:1553–1565 (1982).Google Scholar
  42. 42.
    E. L. Forker and B. A. Luxon. J. Clin. Invest. 67:1517–1522 (1981).Google Scholar
  43. 43.
    R. Weisiger, J. Gollan, and R. Ockner. Science 211:1048–1051 (1981).Google Scholar
  44. 44.
    R. K. Ockner, R. A. Weisiger, and J. L. Gollan. Am. J. Physiol. 245:G13–G18 (1983).Google Scholar
  45. 45.
    W. E. Muller and U. Wollert. Pharmacology 19:59–67 (1979).Google Scholar
  46. 46.
    K. J. Baker and S. E. Bradley. J. Clin. Invest. 45:281–287 (1966).Google Scholar
  47. 47.
    J. R. Bloomer, P. d. Berk, J. Vergalla, and N. I. Berlini. Clin. Sci. Mol. Med. 45:505–516 (1973).Google Scholar
  48. 48.
    E. L. Forker and B. A. Luxon. Hepatology 5:1236–1237 (1985).Google Scholar
  49. 49.
    S. C. Tsao, Y. Sugiyama, Y. Sawada, T. Iga, and M. Hanano. J. Pharmacokin. Biopharm. 16:165–181 (1988).Google Scholar
  50. 50.
    T. Horie, T. Mizuma, S. Kawai, and S. Awazu. Am. J. Physiol. 245:G465–G470 (1988).Google Scholar
  51. 51.
    W. Stremmel, B. J. Potter, and P. D. Berk. Biochim. Biophys. Acta 756:20–27 (1983).Google Scholar
  52. 52.
    U. Kragh Hansen. Pharmacol. Rev. 33:17–53 (1981).Google Scholar
  53. 53.
    D. J. Morgan, D. B. Jones, and R. A. Smallwood. Hepatology 5:1231–1235 (1985).Google Scholar
  54. 54.
    W. A. Colburn. J. Pharm. Sci. 71:373–374 (1982).Google Scholar
  55. 55.
    Y. R. Stollman, U. Gartner, L. Theilmann, N. Ohmi, and A. W. Wolkoff. J. Clin. Invest. 72:718–723 (1983).Google Scholar
  56. 56.
    R. A. Weisiger. Proc. Natl. Acad. Sci. USA 82:1563–1567 (1985).Google Scholar
  57. 57.
    L. Paul and C. P. Shorma. J. Cell Interface Sci. 84:546–549 (1981).Google Scholar
  58. 58.
    J. Wilting, W. F. van der Giesen, L. H. Janssen, M. Weideman, M. Otagiri, and J. K. Perrin. J. Biol. Chem. 255:3032–3037 (1980).Google Scholar
  59. 59.
    R. A. Weisiger and W. L. Ma. J. Clin. Invest. 79:1070–1077 (1987).Google Scholar
  60. 60.
    G. R. Wilkinson. Pharmacol. Rev. 39:1–47 (1987).Google Scholar
  61. 61.
    P. van der Sluijs, B. Postema, and D. K. F. Meijer. Hepatology 7:688–695 (1987).Google Scholar
  62. 62.
    W. B. Karp, M. Kinsley, S. B. Subramanyam, and A. F. Robertson. Alcohol Clin. Exp. Res. 9:429–432 (1985).Google Scholar
  63. 63.
    A. W. Wolkoff. Hepatology 7:777–779 (1987).Google Scholar
  64. 64.
    G. M. M. Groothuis, M. J. Hardonk, and D. K. F. Meijer. Trends Pharmacol. Sci. 6:322–327 (1985).Google Scholar
  65. 65.
    J. L. Barnhart, B. L. Witt, W. Hardison, and R. N. Berk. Am. J. Physiol. 244:G630–G636 (1983).Google Scholar
  66. 66.
    B. L. Blitzer and L. Lyons. Am. J. Physiol. 249:G34–G38 (1985).Google Scholar
  67. 67.
    S. Øie and F. Fiori. J. Pharmacol. Exp. Ther. 234:636–640 (1985).Google Scholar
  68. 68.
    J. H. Anderson, R. C. Anderson, and L. S. Iben. J. Pharmacol. Exp. Ther. 206:172–180 (1978).Google Scholar
  69. 69.
    M. S. Roberts and M. Rowland. J. Pharmacokinet. Biopharm. 14:261–289 (1986).Google Scholar
  70. 70.
    R. G. Murray and Y. K. Tam. Drug Metab. Disp. 15:27–31 (1987).Google Scholar
  71. 71.
    D. L. Eaton and J. A. Richards. Biochem. Pharmacol. 35:2721–2725 (1986).Google Scholar
  72. 72.
    Y. Echigoya, Y. Matsumoto, Y. Nakagawa, T. Suga, and S. Niinobe. Biochem. Pharmacol. 21:477–484 (1972).Google Scholar
  73. 73.
    J. W. Edmondson, B. A. Miller, and L. Lumeng. Am. J. Physiol. 249:G427–G433 (1985).Google Scholar
  74. 74.
    L. R. Engelkind, R. Gronwall, and M. S. Anwer. Am. J. Vet. Res. 41:355–361 (1980).Google Scholar
  75. 75.
    L. D. de Leve and K. M. Piafsky. Trends Pharmacol. Sci. 2:283–284 (1981).Google Scholar
  76. 76.
    M. Yashhara, J. Fujiwara, S. Kitade, H. Katayama, K. Okumara, and R. Hori. J. Pharmacol Exp. Ther. 235:513–520 (1985).Google Scholar
  77. 77.
    J. van Renswoude, K. R. Bridges, J. B. Harford, and R. D. Klausner. Proc. Natl. Acad. Sci. USA 79:6186–6190 (1982).Google Scholar
  78. 78.
    M. S. Brown and J. L. Goldstein. Science 232:34–47 (1986).Google Scholar
  79. 79.
    L. Robert, J. Migne, R. Santonja, R. Zini, K. Schmid, and J. P. Tillement. Int. J. Clin. Pharmacol. Ther. Toxicol. 21:271–276 (1983).Google Scholar
  80. 80.
    H. Karaskova, K. Bezouska, L. Starka, R. Hampl, A. T. Pikulev, M. V. Sholukh, and O. Taborski. J. Steroid Biochem. 24:725–729 (1986).Google Scholar
  81. 81.
    J. G. Weitering, W. Lammers, D. K. F. Meijer, and G. J. Mulder. Naunyn Schmiedeberg Arch. Pharmacol. 299:277–281 (1977).Google Scholar
  82. 82.
    Y. Echigoya, Y. Matsumoto, Y. Nakagawa, T. Suga, and S. Niinobe. Biochem. Pharmacol. 21:477–484 (1972).Google Scholar
  83. 83.
    P. van der Sluijs, H. H. Spanjer, and D. K. F. Meijer. J. Pharmacol. Exp. Ther. 240:668–673 (1987).Google Scholar
  84. 84.
    B. Ketterer, P. Ross-Mansell, and J. K. Whitehead. Biochem. J. 103:316–324 (1967).Google Scholar
  85. 85.
    A. J. Levi, Z. Gatmaitan, and I. M. Arias. J. Clin. Invest. 48:2156–2167 (1969).Google Scholar
  86. 86.
    K. S. Morey and G. Litwack. Biochem. J. 103:316–324 (1967).Google Scholar
  87. 87.
    C. D. Klaassen and J. B. Watkins. Pharmacol. Rev. 36:1–67 (1984).Google Scholar
  88. 88.
    N. M. Bass. Chem. Phys. Lipids 38:95–114 (1985).Google Scholar
  89. 89.
    B. Ketterer, E. Tipping, J. F. Hackney, and D. Beale. Biochem. J. 155:511–521 (1976).Google Scholar
  90. 90.
    E. L. Forker. Annu. Rev. Physiol. 39:323–347 (1977).Google Scholar
  91. 91.
    J. A. T. P. Meuwissen, B. Ketterer, and K. P. M. Heirwegh. In P. D. Berk and N. I. Berlin (eds.), Chemistry and Physiology of Bile Pigments, NIH, Bethesda, Md., 1977, pp. 323–327.Google Scholar
  92. 92.
    A. W. Wolkoff, C. A. Goresky, J. Sellin, Z. Gatmaitan, and I. M. Arias. Am. J. Physiol. 236:E638–E648 (1979).Google Scholar
  93. 93.
    D. K. F. Meijer, J. G. Weitering, and R. J. Vonk. J. Pharmacol. Exp. Ther. 198:229–239 (1976).Google Scholar
  94. 94.
    J. G. Weitering, G. J. Mulder, D. K. F. Meijer, W. Lammers, M. Veenhuis, and S. E. Wendelaar-Bonga. Naunyn-Schmiedeberg Arch. Pharmacol. 289:251–256 (1975).Google Scholar
  95. 95.
    P. Johansson, J. O. Josefsoon, and L. Nassbeyer. Br. J. Pharm. 83:615–623 (1984).Google Scholar
  96. 96.
    G. J. Kaloyanides. In C. Bianchi, A. Bertelli, and C. G. Duarte (eds.), Kidney, Small Proteins and Drugs, Contributions to Nephrology, Basel, Karger, 1984, pp. 148–167.Google Scholar
  97. 97.
    R. J. Fallon and A. L. Schwartz. Hepatology (Baltimore) 5:899–901 (1985).Google Scholar
  98. 98.
    M. J. Poznansky and R. L. Juliano. Pharmacol. Rev. 36:277–336 (1984).Google Scholar
  99. 99.
    R. A. Firestone, J. M. Pisano, M. M. McPhaul, and M. M. Krieger. J. Med. Chem. 27:1037–1043 (1984).Google Scholar
  100. 100.
    L. Fiume, A. Mattioli, P. G. Balboni, M. Tognon, B. Brodano, J. de Vries, and Th. Wieland. FEBS Lett. 103:47–51 (1979).Google Scholar
  101. 101.
    L. Fiume, A. Mattioli, C. Busi, and C. Accorsi. Gut 25:1392–1398 (1984).Google Scholar
  102. 102.
    J. Hofsteenge, A. Capuano, R. Altszuler, and S. Moore. J. Med. Chem. 29:1765–1769 (1986).Google Scholar
  103. 103.
    A. Trouet, P. Pirson, R. Baurain, and M. Masquelier. In W. Peters and W. H. G. Richards (eds.), Handbook of Experimental Pharmacology 68, Part 2, Springer Verlag, Berlin, 1984, pp. 253–266.Google Scholar
  104. 104.
    A. Trouet, M. Masquelier, R. Baurain, and D. Deprez de Campeneere. Proc. Natl. Acad. Sci. USA 79:626–629 (1982).Google Scholar
  105. 105.
    G. Y. Wu, C. H. Wu, and R. J. Stockert. Proc. Natl. Acad. Sci. USA 80:3078–3080 (1983).Google Scholar
  106. 106.
    D. L. Simpson, D. B. Cawley, and H. Herschmann. Cell (Cambridge) 29:469–473 (1982).Google Scholar
  107. 107.
    T. M. Chang and D. W. Killberg. J. Biol. Chem. 257:12563–12572 (1982).Google Scholar
  108. 108.
    G. Y. Wu, C. H. Wu, and M. I. Rubin. Hepatology (Baltimore) 5:709–713 (1985).Google Scholar
  109. 109.
    G. Y. Wu and C. H. Wu. Biochemistry 27:887–892 (1988).Google Scholar
  110. 110.
    L. Fiume, B. Bassi, C. Busi, A. Mattioli, G. Spinosa, and H. Faulstich. FEBS Lett. 203:203–206 (1986).Google Scholar
  111. 111.
    D. B. Cawley, D. L. Simpson, and H. R. Herschman. Proc. Natl. Acad. Sci. USA 78:3383–3387 (1981).Google Scholar
  112. 112.
    P. C. Smith and L. Z. Benet. Drug Metab. Disp. 14:503–505 (1986).Google Scholar
  113. 113.
    P. C. Smith, A. F. McDonagh, and L. Z. Benet. J. Clin. Invest. 77:934–939 (1986).Google Scholar
  114. 114.
    A. McDonagh, L. A. Palma, J. J. Lauff, and T. W. Wu. J. Clin. Invest. 74:763–764 (1984).Google Scholar
  115. 115.
    A. Gautam, H. Seligson, E. R. Gordon, D. Seligson, and J. L. Boyer. J. Clin. Invest. 73:873–877 (1984).Google Scholar
  116. 116.
    T. J. Mauch, T. M. Donohue, R. K. Zetterman, M. Sorrell, and D. J. Tuma. Hepatology (Baltimore) 6:263–269 (1986).Google Scholar
  117. 117.
    R. C. San George and H. D. Hoberman. J. Biol. Chem. 261:6811–6821 (1986).Google Scholar
  118. 118.
    H. F. Bunn, K. H. Gabbay, and P. M. Gallop. Science 200:21–27 (1978).Google Scholar
  119. 119.
    J. W. Baynes, S. R. Thorpe, and M. H. Martiashaw. Meth. Enzymol. 106:88–99 (1984).Google Scholar
  120. 120.
    N. Iberg and R. Fluckiger. J. Biol. Chem. 261:13542–13545 (1986).Google Scholar
  121. 121.
    S. Pongor, P. C. Ulrich, F. A. Benisath, and A. Cerami. Proc. Natl. Acad. Sci. USA 81:2684–2688 (1984).Google Scholar
  122. 122.
    J. L. Witztum, U. P. Steinbrecher, M. Fisher, and A. Kesaniemi. Proc. Natl. Acad. Sci. USA 80:2757–2761 (1983).Google Scholar
  123. 123.
    V. Vishwanath, K. E. Frank, C. A. Elmets, P. J. Dauchot, and V. M. Monnier. Diabetes 35:916–921 (1986).Google Scholar
  124. 124.
    V. Monnier, C. A. Elmets, and K. E. Frank. J. Clin. Invest. 78:832–835 (1986).Google Scholar
  125. 125.
    A. Cerami, H. Vlassara, and M. Brownlee. J. Cell. Biochem. 30:111–120 (1986).Google Scholar
  126. 126.
    H. Vlassara, M. Brownlee, and A. Cerami. Proc. Natl. Acad. Sci. USA 82:5588–5592 (1985).Google Scholar
  127. 127.
    H. Vlassara, M. Brownlee, and A. Cerami. J. Exp. Med. 164:1301–1309 (1986).Google Scholar
  128. 128.
    D. M. Mosser, H. Vlassara, P. J. Edelson, and A. Cerami. J. Exp. Med. 165:140–145 (1987).Google Scholar
  129. 129.
    J. C. Rogers and S. Kornfield. Biochem. Biophys. Res. Comm. 45:622–629 (1971).Google Scholar
  130. 130.
    G. Ashwell and C. J. Steer. JAMA 246:2358–2364 (1981).Google Scholar
  131. 131.
    L. Fiume, B. Bassi, C. Busi, A. Mattioli, and G. Spinosa. Biochem. Pharmacol. 35:967–972 (1986).Google Scholar
  132. 132.
    D. R. Vera, K. A. Krohn, R. C. Stadalnek, and P. O. Scheibe. Radiology 151:191–156 (1984).Google Scholar
  133. 133.
    R. C. Stadalnek, D. R. Vera, S. Woodle, W. L. Trudeau, B. A. Porker, R. E. Ward, K. H. Krohn, and L. F. O'Grady. J. Nucl. Med. 26:1233–1242 (1985).Google Scholar
  134. 134.
    H. J. M. Kempen, C. Hoes, J. H. v. d. Boom, H. H. Spanjer, J. de Lange, and A. Langendoen. J. Med. Chem. 27:1306–1312 (1984).Google Scholar
  135. 135.
    K. Furuno, N. Miwa, and K. Kabo. J. Biochem. 93:249–256 (1983).Google Scholar
  136. 136.
    P. van der Sluijs, R. Oosting, J. G. Weitering, M. J. Hardonk, and D. K. F. Meijer. Biochem. Pharmacol. 34:1399–1405 (1985).Google Scholar
  137. 137.
    S. Bose and J. Hickman. J. Biol. Chem. 252:8336–8337 (1977).Google Scholar
  138. 138.
    A. Rifai, D. S. Finbloom, D. Magilavy, and P. H. Plotz. J. Immunol. 128:2269–2275 (1982).Google Scholar
  139. 139.
    R. J. Stockert, H. B. Haimes, A. G. Morell, P. M. Novikoff, A. B. Novikoff, N. Quintana, and J. Sternlieb. Lab. Invest. 43:556–563 (1980).Google Scholar
  140. 140.
    J. Schmer, J. S. Holcenberg, and J. Roberts. Biochim. Biophys. Acta 538:397–405 (1978).Google Scholar
  141. 141.
    G. J. Murray, T. W. Doebber, T. Y. Shen, M. S. Wu, M. M. Poupipom, R. L. Bugianesi, R. O. Brady, and J. Barranger. Biochem. Med. 34:241–246 (1985).Google Scholar
  142. 142.
    F. S. Furbish, C. J. Steer, N. L. Krett, and J. A. Barranger. Biochim. Biophys. Acta 673:425–430 (1981).Google Scholar
  143. 143.
    V. Keegan-Rogers and G. Y. Wu. Hepatology 7:1026 (1987).Google Scholar
  144. 144.
    Th. J. C. van Berkel, D. J. Dekker, J. K. Kruyt, and H. G. van Eyk. Biochem. J. 243:715–722 (1987).Google Scholar
  145. 145.
    A. D. Attie, R. C. Pittman, and D. Steinberg. Proc. Natl. Acad. Sci. USA 77:5923–5927 (1980).Google Scholar
  146. 146.
    R. Duncan. In J. R. Robinson and V. H. L. Lee (eds.), Controlled Drug Delivery, Marcel Dekker, New York, 1986, pp. 582–607.Google Scholar
  147. 147.
    D. J. P. FitzGerald, T. A. Waldman, M. C. Willingham, and I. Pastan. J. Clin. Invest. 74:966–971 (1984).Google Scholar
  148. 148.
    W. C. Shen and H. J. P. Ryser. Biochem. Biophys. Res. Comm. 102:1048–1054 (1981).Google Scholar
  149. 149.
    E. S. Vitetta and J. W. Uhr. Annu. Rev. Immunol. 3:197–212 (1985).Google Scholar
  150. 150.
    P. van der Sluijs, H. P. Bootsma, B. Postema, F. Moolenaar, and D. K. F. Meijer. Hepatology 6:723–728 (1986).Google Scholar
  151. 151.
    L. Fiume, A. Mattioli, C. Busi, G. Spinosa, and Th. Wieland. Experientia 38:1087–1090 (1982).Google Scholar
  152. 152.
    W. M. Partridge, A. J. van Herle, R. T. Naruse, G. Fierer, and A. Costin. J. Biol. Chem. 258:990–994 (1983).Google Scholar
  153. 153.
    C. P. Stowell and Y. C. Lee. Adv. Carbohydr. Chem. Biochem. 37:225–281 (1980).Google Scholar
  154. 154.
    D. R. Vera, K. A. Krohn, R. C. Stadalnik, and P. O. Scheibe. J. Nucl. Med. 25:779–787 (1984).Google Scholar
  155. 155.
    D. T. Connolly, R. R. Townsend, and K. Kawaguchi. J. Biol. Chem. 257:939–945 (1982).Google Scholar
  156. 156.
    R. E. Pitas, J. Boyles, and R. W. Mahley. J. Cell Biol. 100:103–117 (1985).Google Scholar
  157. 157.
    J. F. Nagelkerke, K. P. Barto, and T. J. C. van Berkel. J. Biol. Chem. 258:12221–12227 (1983).Google Scholar
  158. 158.
    M. S. Brown and J. L. Goldstein. Annu. Rev. Biochem. 52:223–261 (1983).Google Scholar
  159. 159.
    M. E. Haberland and A. M. Fogelman. Proc. Natl. Acad. Sci. USA 82:2693–2697 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Dirk K. F. Meijer
    • 1
    • 2
  • Peter van der Sluijs
    • 3
  1. 1.Department of Pharmacology and TherapeuticsUniversity Center of Pharmacy, University of GroningenGroningenThe Netherlands
  2. 2.Department of Pharmacology and TherapeuticsUniversity of GroningenGroningenThe Netherlands
  3. 3.European Molecular Biology LaboratoryHeidelbergF.R.G

Personalised recommendations