Skip to main content
Log in

Permeability and Mechanism of Albumin, Cationized Albumin, and Glycosylated Albumin Transcellular Transport Across Monolayers of Cultured Bovine Brain Capillary Endothelial Cells

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

We have measured the permeability and binding characteristics of bovine serum albumin (BSA), cationized BSA (cBSA), and glycosylated BSA (gBSA) to primary cultures of bovine brain capillary endothelial cells (BBCEC). These endothelial cells serve as an in vitro model to study the binding, uptake, and transcellular transport of small and large molecule flux across the blood–brain barrier. The rate of [3H]BSA flux across the cultured BBCEC monolayers grown onto polycarbonate membranes (5-µm pore size) was linear with increasing BSA concentration and the flux could be inhibited by temperature reduction to 0–4°C. The maximal binding of [3H]BSA was 0.04 fmol/mg total cell protein and could not be inhibited by nonradiolabeled BSA. The binding of cBSA and gBSA was rapid and could be inhibited by nonradiolabeled cBSA or gBSA, respectively. The maximal amount bound was 1.8 fmol/mg total cell protein for cBSA and 17.4 fmol/mg total cell protein for gBSA. The dissociation constants (K d's) were 27 ± 13 and 3.7 ± 1.1 nM for cBSA and gBSA, respectively. The flux rates of cBSA and gBSA across the endothelial cell monolayers were linear with respect to concentration and they were approximately seven times greater than those observed for BSA. Each of the proteins appeared on the antiluminal side of the endothelial cell monolayers primarily (90%) as intact protein as determined by trichloroacetic acid (TCA) precipitations and sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE). The results for BSA are similar to those observed for lucifer yellow, a fluid-phase endocytic marker. In contrast to BSA, the binding and transcellular transport of cBSA and gBSA appear to proceed by an adsorptive-phase endocytic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. M. Pardridge. Endocrine Rev. 7:314–330 (1986).

    Google Scholar 

  2. J. B. Long and J. W. Holaday. Science 227:1580–1583 (1985).

    Google Scholar 

  3. S. K. Williams, J. J. Devenny, and M. W. Bitensky. Proc. Natl. Acad. Sci. USA 78:2393–2397 (1981).

    Google Scholar 

  4. H. Vlassara, M. Brownlee, and A. Cerami. Clin. Chem. 32:B37–B41 (1986).

    Google Scholar 

  5. M. Brownlee, H. Vlassara, and A. Cerami. Ann. Intern. Med. 101:527–537 (1984).

    Google Scholar 

  6. A. K. Kumagai, J. Eisenberg, and W. M. Pardridge. J. Biol. Chem. 262:15214–15219 (1987).

    Google Scholar 

  7. D. E. Griffin and J. Giffels. J. Clin. Invest. 70:289–295 (1982).

    Google Scholar 

  8. K. L. Audus and R. T. Borchardt. Pharm. Res. 3:81–87 (1986).

    Google Scholar 

  9. U. K. Laemmli. Nature 227:680 (1970).

    PubMed  Google Scholar 

  10. W. M. Pardridge, J. Eisenberg, and W. T. Cefalu. Am. J. Physiol. 249:E264–E267 (1985).

    Google Scholar 

  11. A. Baranczyk-Kuzma, K. L. Audus, and R. T. Borchardt. J. Neurochem. 46:1956–1960 (1986).

    Google Scholar 

  12. R. C. Speth and S. I. Haricks. Proc. Natl. Acad. Sci. USA 82:6340–6343 (1985).

    Google Scholar 

  13. P. J. Jacques. In B. F. Trump and A. V. Arstila (eds.), Pathobiology of Cell Membranes, Academic Press, New York, 1975, pp. 255–282.

    Google Scholar 

  14. S. K. Williams. N.Y. Acad. Sci. 416:457–467 (1983).

    Google Scholar 

  15. J. A. Swanson, B. D. Yirinec, and S. C. Silverstein. J. Cell Biol. 100:851–859 (1985).

    Google Scholar 

  16. J. A. Cooper, P. J. Del Vecchio, F. L. Minnear, K. E. Burhop, W. M. Selig, J. G. N. Garcia, and A. B. Malik. J. Appl. Physiol. 63:1076–1083 (1987).

    Google Scholar 

  17. E. M. Renkin. Acta Physiol. Scand. Suppl. 463:81–91 (1979).

    Google Scholar 

  18. V. A. Levin. J. Med. Chem. 23:682–684 (1980).

    Google Scholar 

  19. F. L. Guillot, T. J. Raub, and K. L. Audus. J. Cell Biol. 105:312 (1987).

    Google Scholar 

  20. A. Muckerheide, R. J. Apple, A. J. Pesce, and J. G. Michael. J. Immunol. 138:833–837 (1987).

    Google Scholar 

  21. N. Shaklai, R. L. Garlick, and H. F. Bunn. J. Biol. Chem. 259:3812–3817 (1984).

    Google Scholar 

  22. J. L. Carpentier, P. Gorden, A. Robert, and L. Orci. Experientia 42:734–744 (1986).

    Google Scholar 

  23. K. S. Matlin. J. Cell Biol. 103:2565–2568 (1986).

    Google Scholar 

  24. B. R. Lentz, Y. Barenholz, and T. E. Thompson. Biochemistry 15:4521–4528 (1976).

    Google Scholar 

  25. B. R. Lentz, Y. Barenholz, and T. E. Thompson. Biochemistry 15:4529–4537 (1976).

    Google Scholar 

  26. J. D. Fenstermacher. Trends Neurosci. 8:449–453 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, K.R., Borchardt, R.T. Permeability and Mechanism of Albumin, Cationized Albumin, and Glycosylated Albumin Transcellular Transport Across Monolayers of Cultured Bovine Brain Capillary Endothelial Cells. Pharm Res 6, 466–473 (1989). https://doi.org/10.1023/A:1015960205409

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015960205409

Navigation