Skip to main content
Log in

Temperature Dependence of Non-Fickian Water Transport and Swelling in Glassy Gelatin Matrices

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The effect of temperature on the swelling kinetics of glassy gelatin matrices exposed to water was studied. The movement of two distinct and characteristic swelling boundaries was measured directly using an optical microscope. Swelling rate constants associated with these moving boundaries demonstrated Arrhenius behavior over the temperature range of 15 to 40°C. The apparent activation energy for non-Fickian water transport into the gelatin glassy core was determined to be 8.1 kcal/mol, and 3.5 kcal/mol was found for the outer expansion of the swelling gelatin network due to water sorption. These findings are compared with activation energies for other solvent–glassy polymer systems, and possible reasons for the unexpectedly low value for non-Fickian water transport in the glassy gelatin solid are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. W. Korsmeyer, E. von Meerwall, and N. A. Peppas. J. Polym. Sci. Polym. Phys. Ed. 24:409–434 (1986).

    Google Scholar 

  2. P. L. Ritger and N. A. Peppas. J. Control. Release 5:37–42 (1987).

    Google Scholar 

  3. C. C. R. Robert, P. A. Buri, and N. A. Peppas. J. Control. Release 5:151–157 (1987).

    Google Scholar 

  4. R. S. Harland, A. Gazzaniga, M. E. Sangalli, P. Colombo, and N. A. Peppas. Pharm. Res. 5:488–496 (1988).

    Google Scholar 

  5. H. B. Hopfenberg and H. L. Frisch. J. Polym. Sci. B 7:405–409 (1969).

    Google Scholar 

  6. D. J. Enscore, H. B. Hopfenberg, and V. T. Stannett. Polymer 18:793–800 (1977).

    Google Scholar 

  7. H. P. Hopfenberg, R. H. Holley, and V. T. Stannett. Polym. Eng. Sci. 9:242–249 (1969).

    Google Scholar 

  8. L. Nicolais, E. Drioli, H. B. Hopfenberg, and G. Caricati. J. Membr. Sci. 3:231–245 (1978).

    Google Scholar 

  9. F. H. Arnold. Protein Eng. 2:21–25 (1988).

    Google Scholar 

  10. A. I. Kaivarainen. In Solvent-Dependent Flexibility of Proteins and Principles of Their Function, D. Reidel, Dordrecht, 1985, pp. 57–79.

    Google Scholar 

  11. I. V. Yannas. J. Macromol. Sci. Rev. Macromol. Chem. C7:49–104 (1972).

    Google Scholar 

  12. C. M. Klech and A. P. Simonelli. J. Membr. Sci. 43:87–101 (1989).

    Google Scholar 

  13. A. H. Windle. In J. Comyn (ed.), Polymer Permeability, Elsevier, London, 1985, pp. 75–118.

    Google Scholar 

  14. P. V. Kozlov and G. I. Burdygina. Polymer 24:651–666 (1983).

    Google Scholar 

  15. W. Borchard, W. Bremmer, and A. Keese. Colloid Polym. Sci. 258:516–526 (1980).

    Google Scholar 

  16. I. V. Yannas and A. V. Tobolsky. Nature 215:509–510 (1967).

    Google Scholar 

  17. H. B. Bull. J. Am. Chem. Soc. 66:1499–1507 (1944).

    Google Scholar 

  18. M. Dole. J. Chem. Phys. 16:25–30 (1948).

    Google Scholar 

  19. A. Kishimoto, E. Maekawa, and H. Fujita. Bull. Chem. Soc. Jap. 33:988–992 (1960).

    Google Scholar 

  20. H. Fujita. Fortschr. Hochpolym. Forsch. 3:1–47 (1961).

    Google Scholar 

  21. G. A. Pogany. Polymer 17:690–694 (1976).

    Google Scholar 

  22. B. P. Tikomirov, H. B. Hopfenberg, V. Stannett, and J. L. Williams. Makromol. Chem. 118:177–188 (1968).

    Google Scholar 

  23. P. M. Smith and M. M. Fisher. Polymer 25:84–90 (1984).

    Google Scholar 

  24. W. E. Roorda, H. E. Boddé, A. G. DeBoer, and H. E. Junginger. Pharm. Weekbl. Sci. Ed. 8:165–189 (1986).

    Google Scholar 

  25. C. H. M. Jacques, H. B. Hopfenberg, and V. Stannett. Polym. Eng. Sci. 13:81–87 (1973).

    Google Scholar 

  26. T. M. Aminabhavi, R. W. Thomas, and P. E. Cassidy. Polym. Eng. Sci. 24:1417–1420 (1984).

    Google Scholar 

  27. A. M. Thomas. J. Appl. Chem. 1:141–158 (1951).

    Google Scholar 

  28. V. Stannett and J. L. Williams. J. Polym. Sci. C2:45–59 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klech, C.M., Pari, J.H. Temperature Dependence of Non-Fickian Water Transport and Swelling in Glassy Gelatin Matrices. Pharm Res 6, 564–570 (1989). https://doi.org/10.1023/A:1015945229516

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015945229516

Navigation