Skip to main content

Use of Shed Snake Skin as a Model Membrane for in Vitro Percutaneous Penetration Studies: Comparison with Human Skin

Abstract

The potential usefulness of shed snake skin as a model membrane for transdermal research was examined. There are similarities between shed snake skin and human stratum corneum in terms of structure, composition, lipid content, water permeability, etc. The permeability of various compounds and the contribution of several functional groups to the permeability were also found to be similar between shed snake skin and human skin. Moreover, the permeability of compounds through shed snake skin was increased by Azone, one of the most extensively studied transdermal penetration enhancers. Considering the similarities between shed snake skin and human skin, ease of storage and handling, and low cost, shed snake skin may offer a good model membrane for transdermal research.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1.

    R. J. Scheuplein and I. H. Blank. Physiol. Rev. 51 (4):702–747

  2. 2.

    M. J. Bartek, J. A. LaBudde, and H. I. Maibach. J. Invest. Dermatol. 58 (3):114–123 (1972).

    Google Scholar 

  3. 3.

    P. Campbell, T. Watanabe, and S. K. Chandrasekaran. Fed. Proc. 35:639 (1976).

    Google Scholar 

  4. 4.

    M. Walker, P. H. Dugard, and R. C. Scott. Hum. Toxicol. 2:561–562 (1983).

    Google Scholar 

  5. 5.

    R. C. Wester and P. K. Noonan. Int. J. Pharm. 7:99–110 (1980).

    Google Scholar 

  6. 6.

    G. L. Flynn, H. Durrheim, and W. I. Higuchi. J. Pharm. Sci. 70 (1):52–56 (1981).

    Google Scholar 

  7. 7.

    D. S-L. Chow, I. Kaka, and T. I. Wang. J. Pharm. Sci. 73 (12):1794–1799 (1984).

    Google Scholar 

  8. 8.

    J. Hadgraft and G. Ridout. Int. J. Pharm. 39:149–156 (1987).

    Google Scholar 

  9. 9.

    J. Hadgraft and G. Ridout. Int. J. Pharm. 42:97–104 (1988).

    Google Scholar 

  10. 10.

    P. F. A. Maderson. Am. Zool. 12:159–171 (1972).

    Google Scholar 

  11. 11.

    A. M. Kligman. Am. Heart J. 108 (1):200–206 (1984).

    Google Scholar 

  12. 12.

    D. Dupuis, A. Rougier, R. Roguet, C. Lotte, and G. Kalopissis. J. Invest. Dermatol. 82:353–356 (1984).

    Google Scholar 

  13. 13.

    T. K. Banerjee and A. K. Mittal. In R. I. C. Spearman and P. A. Riley (eds.), The Skin of Vertebrates, Academic Press, London, 1978, pp. 23–34.

    Google Scholar 

  14. 14.

    L. Landmann. J. Morphol. 162:93–126 (1979).

    Google Scholar 

  15. 15.

    J. B. Roberts and H. B. Lillywhite. Science 207:1077–1079 (1980).

    Google Scholar 

  16. 16.

    L. Landmann, C. Stolinski, and B. Martin. Cell Tissue Res. 215:369–382 (1981).

    Google Scholar 

  17. 17.

    P. Licht and A. F. Bennett. Copeia 702–707 (1972).

  18. 18.

    A. F. Bennett and P. Licht. Comp. Biochem. Physiol. 52A:213–215 (1975).

    Google Scholar 

  19. 19.

    J. B. Roberts and H. B. Lillywhite. J. Exp. Zool. 228:1–9 (1983).

    Google Scholar 

  20. 20.

    G. S. Berenson and G. E. Burch. Am. J. Trop. Med. 31:842–853 (1951).

    Google Scholar 

  21. 21.

    M. A. Lampe, M. L. Williams, and P. M. Elias. J. Lipid Res. 24:131–140 (1983).

    Google Scholar 

  22. 22.

    M. A. Lampe, A. C. Burlingame, J. Whitney, M. L. Williams, B. E. Brown, E. Roitman, and P. M. Elias. J. Lipid Res. 24:120–130 (1983).

    Google Scholar 

  23. 23.

    N. Nicolaides. Science 186:19–26 (1974).

    Google Scholar 

  24. 24.

    J. B. Roberts and G. M. Helmkamp. Mid-west Regional Meeting of Society for Investigative Dermatology, Chicago, 1982.

  25. 25.

    D. G. Ahern and D. T. Downing. Lipids 9 (1):8–14 (1974).

    Google Scholar 

  26. 26.

    R. Ibuki. Ph.D. thesis, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, 1985.

  27. 27.

    M. Akazawa, T. Itoh, K. Masaki, B. T. Nghiem, N. Tsuzuki, R. Konishi, and T. Higuchi. Int. J. Pharm. 50:53–60 (1989).

    Google Scholar 

  28. 28.

    K. Sugibayashi, K. Hosoya, Y. Morimoto, and W. I. Higuchi. J. Pharm. Pharmacol. 37:578–580 (1985).

    Google Scholar 

  29. 29.

    Y. Morimoto, K. Sugibayashi, K. Hosoya, and W. I. Higuchi. Int. J. Pharm. 32:31–38 (1986).

    Google Scholar 

  30. 30.

    R. B. Stoughton and W. O. McClure. Drug. Dev. Ind. Pharm. 9 (4):725–744 (1983).

    Google Scholar 

  31. 31.

    P. Agrawala and W. A. Ritschel. J. Pharm. Sci. 77 (9):776–778 (1988).

    Google Scholar 

  32. 32.

    P. M. Elias, E. R. Cooper, A. Korc, and B. E. Brown. J. Invest. Dermatol. 76:297–301 (1981).

    Google Scholar 

  33. 33.

    I. H. Blank. J. Invest. Dermatol. 18:433–440 (1952).

    Google Scholar 

  34. 34.

    M. S. Roberts, R. A. Anderson, and J. Swarbrick. J. Pharm. Pharmacol. 29:677–683 (1977).

    Google Scholar 

  35. 35.

    R. J. Scheuplein, I. H. Blank, G. J. Brauner, and D. J. MacFarlane. J. Invest. Dermatol. 52 (1):63–70 (1969).

    Google Scholar 

  36. 36.

    B. D. Anderson, W. I. Higuchi, and P. V. Raykar. Pharm. Res. 5 (9):566–573 (1988).

    Google Scholar 

  37. 37.

    O. Wong, J. Huntington, T. Nishihata, and J. H. Rytting. Pharm. Res. 6 (4):286–295 (1989).

    Google Scholar 

  38. 38.

    R. C. Wester and H. I. Maibach. In Maibach and Lowe (eds.), Models in Dermatology, Karger, Basel, 1985, pp. 159–169.

    Google Scholar 

  39. 39.

    A. Rougier, C. Lotte, and H. I. Maibach. J. Pharm. Sci. 76 (6):451–454 (1987).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Howard Rytting.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Itoh, T., Xia, J., Magavi, R. et al. Use of Shed Snake Skin as a Model Membrane for in Vitro Percutaneous Penetration Studies: Comparison with Human Skin. Pharm Res 7, 1042–1047 (1990). https://doi.org/10.1023/A:1015943200982

Download citation

  • skin penetration
  • transdermal
  • shed snake skin
  • functional group contribution
  • Azone
  • Elaphe obsoleta