Skip to main content
Log in

Current Aspects of Practical Two-Dimensional (2D) Nuclear Magnetic Resonance (NMR) Spectroscopy: Applications to Structure Elucidation

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The intense effort in developing new 2D NMR methodology over the past decade has been driven by the desire to study molecules of progressively greater complexity. The need for refined structural detail has produced new types of experiments that require more involvement on the part of the practicing spectroscopist in understanding the theoretical bases leading to their experimental realization. In this Review we discuss several concepts that are important in the successful application of current versions of the most useful 2D NMR experiments, such as coherence transfer, phase cycling, apodization functions, and obtaining pure-phase 2D NMR spectra. The intimate interconnections among these concepts are emphasized. The principles underlying the 2D NMR experiments are described and then the experiments are illustrated in assigning the 1H and 13C NMR spectra of the triterpene, ursolic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Jeener. Ampere International Summer School, Basko Polje, Yugoslavia (1971).

  2. L. Müller, A. Kumar, and R. R. Ernst. J. Chem. Phys. 63:5490–5491 (1975).

    Google Scholar 

  3. W. P. Aue, E. Bartholdi, and R. R. Ernst. J. Chem. Phys. 64:2229–2246 (1976).

    Google Scholar 

  4. H. Kessler, M. Gehrke, and C. Griesinger. Angew. Chem. Int. Ed. Engl. 27:490–536 (1988).

    Google Scholar 

  5. R. Freeman. A Handbook of Nuclear Magnetic Resonance, John Wiley and Sons, New York, 1987.

    Google Scholar 

  6. J. H. Prestegard. In W. S. Brey (ed.), Pulse Methods in 1D and 2D Liquid-Phase NMR, Academic Press, New York, 1988, pp 435–488.

    Google Scholar 

  7. R. R. Ernst, G. Bodenhausen, and A. Wakaun. Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford, 1987.

    Google Scholar 

  8. K. Wüthrich. NMR of Proteins and Nucleic Acids, John Wiley and Sons, New York, 1986.

    Google Scholar 

  9. G. A. Morris. Magn. Reson. Chem. 24:371–403 (1986).

    Google Scholar 

  10. A. Bax. Bull. Magn. Reson. 7:167–183 (1985).

    Google Scholar 

  11. G. Wider, S. Macura, A. Kumar, R. R. Ernst, and K. Wüthrich. J. Magn. Reson. 56:207–234 (1984).

    Google Scholar 

  12. A. Bax. Two-Dimensional Nuclear Magnetic Resonance in Liquids, Delft University Press, Boston, 1982.

    Google Scholar 

  13. T. C. Farrar and E. D. Becker. Pulse and Fourier Transform NMR, Academic Press, New York, 1971.

    Google Scholar 

  14. D. M. Doddrell, P. W. Khong, and K. G. Lewis. Tetrahedron Lett. 2381–2384 (1974).

  15. S. Seo, Y. Tomita, and K. Kai. Tetrahedron Lett. 7–10 (1975).

  16. W. F. Reynolds, S. McLean, J. Poplawski, R. G. Enriquez, L. I. Escobar, and I. Leon. Tetrahedron 42:3419–3428 (1986).

    Google Scholar 

  17. J. Jeener, B. H. Meier, P. Bachmann, and R. R. Ernst. J. Chem. Phys. 71:4546–4553 (1979).

    Google Scholar 

  18. C. P. Slicter. Principles of Magnetic Resonance, Springer-Verlag, New York, 1980, pp. 150–167.

    Google Scholar 

  19. O. W. Sørensen, G. W. Eich, M. H. Levitt, G. Bodenhausen, and R. R. Ernst. Progr. NMR Spectrosc. 16:163–192 (1983).

    Google Scholar 

  20. A. Bax, R. Freeman, and G. A. Morris. J. Magn. Reson. 42:164–168 (1981).

    Google Scholar 

  21. K. Nagayama, A. Kumar, K. Wüthrich, and R. R. Ernst. J. Magn. Reson. 40:321–334 (1980).

    Google Scholar 

  22. D. I. Hoult and R. E. Richards. Proc. Roy. Soc. Lond. Ser. A 344:311–340 (1975).

    Google Scholar 

  23. A. D. Bain. J. Magn. Reson. 56:418–427 (1984).

    Google Scholar 

  24. G. Bodenhausen, H. Kogler, and R. R. Ernst. J. Magn. Reson. 58:370–388 (1984).

    Google Scholar 

  25. J. C. Lindon and A. G. Ferrige. Progr. NMR Spectrosc. 14:27–66 (1980).

    Google Scholar 

  26. G. Bodenhausen, R. Freeman, R. Niedermeyer, and D. L. Turner. J. Magn. Reson. 24:291–294 (1976).

    Google Scholar 

  27. P. Bachmann, W. P. Aue, L. Müller, and R. R. Ernst. J. Magn. Reson. 28:29–39 (1977).

    Google Scholar 

  28. A. Bax, R. Freeman, and G. A. Morris. J. Magn. Reson. 43:333–338 (1981).

    Google Scholar 

  29. A. DeMarco and K. Wüthrich. J. Magn. Reson. 24:201–204 (1976).

    Google Scholar 

  30. A. F. Mehlkopf, D. Korbee, T. A. Tiggleman, and R. Freeman. J. Magn. Reson. 58:315–323 (1984).

    Google Scholar 

  31. G. A. Morris. J. Magn. Reson. 78:281–291 (1988).

    Google Scholar 

  32. R. E. Klevit. J. Magn. Reson. 62:551–555 (1985).

    Google Scholar 

  33. G. Otting, H. Widmer, G. Wagner, and K. Wüthrich. J. Magn. Reson. 66:187–193 (1986).

    Google Scholar 

  34. R. Baumann, G. Wider, R. R. Ernst, and K. Wüthrich. J. Magn. Reson. 44:402–406 (1981).

    Google Scholar 

  35. L. Müller and R. R. Ernst. Mol. Phys. 38:963–992 (1979).

    Google Scholar 

  36. D. J. States, R. A. Haberkorn, and D. J. Ruben. J. Magn. Reson. 48:286–292 (1982).

    Google Scholar 

  37. D. Marion and K. Wüthrich. Biochem. Biophys. Res. Comm. 113:967–974 (1983).

    Google Scholar 

  38. J. Keeler and D. Neuhaus. J. Magn. Reson. 63:454–472 (1985).

    Google Scholar 

  39. A. G. Redfield and S. D. Kunz. J. Magn. Reson. 19:250–254 (1975).

    Google Scholar 

  40. R. R. Ernst. Adv. Magn. Reson. 2:1–135 (1966).

    Google Scholar 

  41. M. Gueron. J. Magn. Reson. 30:515–520 (1978).

    Google Scholar 

  42. U. Piantini, O. W. Sørensen, and R. R. Ernst. J. Am. Chem. Soc. 104:6800–6801 (1982).

    Google Scholar 

  43. G. A. Morris and R. Freeman. J. Am. Chem. Soc. 101:760–762 (1979).

    Google Scholar 

  44. D. M. Doddrell, D. T. Pegg, and M. R. Bendall. J. Magn. Reson. 48:323–327 (1982).

    Google Scholar 

  45. A. A. Maudsley, L. Müller, and R. R. Ernst. J. Magn. Reson. 28:463–469 (1977).

    Google Scholar 

  46. G. Bodenhausen and R. Freeman. J. Magn. Reson. 28:471–476 (1977).

    Google Scholar 

  47. L. Müller. J. Am. Chem. Soc. 101:4481–4484 (1979).

    Google Scholar 

  48. A. Bax, R. H. Griffey, and B. L. Hawkins. J. Magn. Reson. 55:301–315 (1983).

    Google Scholar 

  49. D. H. Live, D. G. Davis, W. C. Agosta, and D. Cowburn. J. Am. Chem. Soc. 106:6104–6105 (1984).

    Google Scholar 

  50. A. Bax and S. Subramanian. J. Magn. Reson. 67:565–569 (1986).

    Google Scholar 

  51. D. Brühwiler and G. Wagner. J. Magn. Reson. 69:546–551 (1986).

    Google Scholar 

  52. M. R. Bendall and D. T. Pegg. J. Magn. Reson. 53:272–296 (1983).

    Google Scholar 

  53. G. Bodenhausen and D. J. Ruben. Chem. Phys. Lett. 69:185–189 (1980).

    Google Scholar 

  54. J. R. Garbow, D. P. Weitekamp, and A. Pines. Chem. Phys. Lett. 93:504–509 (1982).

    Google Scholar 

  55. A. Bax. J. Magn. Reson. 52:330–334 (1983).

    Google Scholar 

  56. M. H. Levitt and R. Freeman. J. Magn. Reson. 43:502–507 (1981).

    Google Scholar 

  57. A. J. Shaka, J. Keeler, T. Frenkiel, and R. Freeman. J. Magn. Reson. 52:335–338 (1983).

    Google Scholar 

  58. A. J. Shaka, J. Keeler, and R. Freeman. J. Magn. Reson. 53:313–340 (1983).

    Google Scholar 

  59. A. J. Shaka, P. B. Barker, and R. Freeman. J. Magn. Reson. 64:547–552 (1985).

    Google Scholar 

  60. R. Freeman, T. H. Mareci, and G. A. Morris. J. Magn. Reson. 42:341–345 (1981).

    Google Scholar 

  61. M. R. Bendall, D. T. Pegg, and D. M. Doddrell. J. Magn. Reson. 45:8–29 (1981).

    Google Scholar 

  62. M. R. Bendall, D. T. Pegg, D. M. Doddrell, and J. Field. J. Magn. Reson. 51:520–526 (1983).

    Google Scholar 

  63. D. Brühwiler and G. Wagner. J. Magn. Reson. 69:546–551 (1986).

    Google Scholar 

  64. A. Bax and S. Subramanian. J. Magn. Reson. 67:565–569 (1986).

    Google Scholar 

  65. J. H. Noggle and R. E. Schirmer. The Nuclear Overhauser Effect, Chemical Applications, Academic Press, New York, 1971.

    Google Scholar 

  66. S. Macura, Y. Huang, D. Suter, and R. R. Ernst. J. Magn. Reson. 43:259–281 (1981).

    Google Scholar 

  67. A. A. Bothner-By, R. L. Stephens, J. Lee, C. D. Warren, and R. W. Jeanloz. J. Am. Chem. Soc. 106:811–813 (1984).

    Google Scholar 

  68. A. Kalk and H. J. C. Berendsen. J. Magn. Reson. 24:343–366 (1976).

    Google Scholar 

  69. A. Bax and D. G. Davis. J. Magn. Reson. 63:207–213 (1985).

    Google Scholar 

  70. H. Kessler, C. Griesinger, R. Kerssebaum, K. Wagner, and R. R. Ernst. J. Am. Chem. Soc. 109:607–609 (1987).

    Google Scholar 

  71. C. Griesinger and R. R. Ernst. J. Magn. Reson. 75:261–271 (1988).

    Google Scholar 

  72. G. Eich, G. Bodenhausen, and R. R. Ernst. J. Am. Chem. Soc. 104:3731–3732 (1982).

    Google Scholar 

  73. P. H. Bolton and G. Bodenhausen. Chem. Phys. Lett. 89:139–144 (1982).

    Google Scholar 

  74. G. Wagner. J. Magn. Reson. 55:151–156 (1983).

    Google Scholar 

  75. A. Bax and G. Drobny. J. Magn. Reson. 61:306–320 (1985).

    Google Scholar 

  76. P. L. Weber and L. Müller. J. Magn. Reson. 73:184–190 (1987).

    Google Scholar 

  77. O. W. Sørensen. Dissertation, ETH, No. 7658 (1984).

  78. L. Braunschweiler and R. R. Ernst. J. Magn. Reson. 53:521–528 (1983).

    Google Scholar 

  79. D. G. Davis and A. Bax. J. Am. Chem. Soc. 107:2820–2821 (1985).

    Google Scholar 

  80. A. Bax and D. G. Davis. J. Magn. Reson. 65:355–360 (1985).

    Google Scholar 

  81. P. L. Weber, L. C. Sieker, T. S. Anantha Samy, B. R. Reid, and G. Drobny. J. Am. Chem. Soc. 109:5842–5844 (1987).

    Google Scholar 

  82. D. G. Davis and A. Bax. J. Am. Chem. Soc. 107:7197–7198 (1985).

    Google Scholar 

  83. S. R. Hartmann and E. L. Hahn. Phys. Rev. 128:2042–2053 (1962).

    Google Scholar 

  84. N. Chandrakumar and S. Subramanian. J. Magn. Reson. 62:346–349 (1985).

    Google Scholar 

  85. N. Chandrakumar, G. V. Visalakshi, D. Ramaswamy, and S. Subramanian. J. Magn. Reson. 67:307–318 (1986).

    Google Scholar 

  86. N. Chandrakumar. J. Magn. Reson. 67:457–465 (1986).

    Google Scholar 

  87. N. Chandrakumar. J. Magn. Reson. 71:322–324 (1987).

    Google Scholar 

  88. G. Wider, S. Macura, A. Kumar, R. R Ernst, and K. Wüthrich. J. Magn. Reson. 56:207–234 (1984).

    Google Scholar 

  89. H. Kessler, W. Bermel, A. Müller, and K.-H. Pook. In S. Undenfriend, J. Meienhofer, and V. J. Hruby (eds.), The Peptides, Vol. 7, Academic Press, New York, 1985, pp. 437–473.

    Google Scholar 

  90. W. P. Aue, J. Karhan, and R. R. Ernst. J. Chem. Phys. 64:4226–4227 (1976).

    Google Scholar 

  91. A. Bax, R. Freeman, T. A. Frenkiel, and M. H. Levitt. J. Magn. Reson. 43:478–483 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kriwacki, R.W., Pitner, T.P. Current Aspects of Practical Two-Dimensional (2D) Nuclear Magnetic Resonance (NMR) Spectroscopy: Applications to Structure Elucidation. Pharm Res 6, 531–554 (1989). https://doi.org/10.1023/A:1015941128608

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015941128608

Navigation