Skip to main content
Log in

Phosphatidylserine as a Determinant for the Tissue Distribution of Weakly Basic Drugs in Rats

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Interorgan variation in tissue distribution of weakly basic drugs such as quinidine, propranolol, and imipramine was investigated as a function of binding to phosphatidylserine (PhS) in tissues. Tissue distributions of these drugs were determined using 10 different tissues at a steady-state plasma concentration and were expressed as tissue-to-plasma partition coefficients (K p values). The concentration of PhS in the tissue was determined by two-dimensional thin-layer chromatography. Plotting of K p values, except for brain, against the tissue PhS concentrations showed a linear relationship, indicating that PhS is a determinant in the interorgan variation of these tissue distributions. Further, differences in tissue distribution among the drugs was considered to be due to the difference in binding potency to PhS. Drug binding parameters to individual standard phospholipid were determined using a hexane-pH 4.0 buffer partition system. Binding was highest to PhS, and a linear relationship was found between the log nK [product of the number of binding sites (n) and the association constant (K) for PhS binding] obtained in vitro and K p values of drugs in tissues in vivo. The empirically derived equation, K p = 14.3 × (log nK) × (PhS cone.) − 8.09, was found to predict K p values in vivo of weakly basic drugs. Thus, a determinant of interorgan variation in the tissue distribution of the weakly basic drugs studied was the tissue concentration of PhS and the drug binding affinity to PhS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Terasaki, T. Iga, Y. Sugiyama, and M. Hanano. J. Pharm. Pharmacol. 34:597–600 (1982).

    Google Scholar 

  2. T. Terasaki, T. Iga, Y. Sugiyama, and M. Hanano. J. Pharm. Sci. 73:524–528 (1984).

    Google Scholar 

  3. T. Terasaki, T. Iga, Y. Sugiyama, and M. Hanano. J. Pharm. Sci. 73:1359–1363 (1984).

    Google Scholar 

  4. K. Wierzba, Y. Sugiyama, K. Okudaira, T. Iga, and M. Hanano. J. Pharm. Sci. 76:872–875 (1987).

    Google Scholar 

  5. K. Wierzba, Y. Sugiyama, T. Iga, and M. Hanano. J. Pharmacobio-Dyn. 11:651–661 (1988).

    Google Scholar 

  6. A. Nishiura, J. Higashi, T. Murakami, Y. Higashi, and N. Yata. J. Pharmacobio-Dyn. 9:819–828 (1986).

    Google Scholar 

  7. A. Nishiura, T. Murakami, Y. Higashi, and N. Yata. J. Pharmacobio-Dyn. 10:135–141 (1987).

    Google Scholar 

  8. A. Nishiura, T. Murakami, Y. Higashi, and N. Yata. Pharm. Res. 5:209–213 (1988).

    Google Scholar 

  9. K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno. J. Pharmacobio-Dyn. 4:879–885 (1981).

    Google Scholar 

  10. M. Sarstrashinh, T. C. Knauss, J. M. Weinberg, and H. D. Humes. J. Pharmacol. Exp. Ther. 222:350–358 (1982).

    Google Scholar 

  11. J. Folch, M. Lees, and G. H. Sloanestantley. J. Biol. Chem. 226:497–509 (1957).

    Google Scholar 

  12. B. J. H. M. Poorthuis, P. J. Yazaki, and K. Y. Hostetler. J. Lipid Res. 17:433–437 (1976).

    Google Scholar 

  13. B. N. Ames and D. T. Dublin. J. Biol. Chem. 235:769–775 (1960).

    Google Scholar 

  14. P. S. Chen Jr., T. Y. Toribara, and H. Warner. Anal. Chem. 28:1756–1758 (1956).

    Google Scholar 

  15. K. Iwamoto, J. Watanabe, K. Araki, N. Deguchi, and H. Sugiyama. J. Pharm. Pharmacol. 37:466–470 (1985).

    Google Scholar 

  16. M. Okiyama, K. Ueno, S. Ohkawara, S. Ohmori, T. Igarashi, and H. Kitagawa. J. Pharm. Sci. 75:1071–1075 (1986).

    Google Scholar 

  17. H. Harashima, Y. Sugiyama, Y. Sawada, T. Iga, and M. Hanano. J. Pharmacokinet. Biopharm. 13:425–440 (1985).

    Google Scholar 

  18. D. Fremstad, S. Jacobsen, and P. K. M. Lunde. Acta Pharmacol. Toxicol. 41:161–176 (1977).

    Google Scholar 

  19. D. W. Schneck, J. F. Pritchard, and A. H. Hayes, Jr. J. Pharmacol. Exp. Ther. 203:621–629 (1977).

    Google Scholar 

  20. M. H. Bickel and R. Gerny. J. Pharm. Pharmacol. 32:669–674 (1980).

    Google Scholar 

  21. S. Shibasaki, Y. Kawamata, R. Nishigaki, and K. Umemura. J. Pharmacobio-Dyn. 12:324–331 (1989).

    Google Scholar 

  22. J. M. Boggs. Biochim. Biophys. Acta 906:353–404 (1987).

    Google Scholar 

  23. T. H. Lin, Y. Sugiyama, Y. Sawada, T. Iga, and M. Hanano. Biochem. Pharmacol. 37:2957–2961 (1988).

    Google Scholar 

  24. R. Ishitani and T. Iwamoto. Jap. J. Pharmacol. 28:85–92 (1978).

    Google Scholar 

  25. M. Chiba, S. Fujita, and T. Suzuki. J. Pharm. Sci. 77:944–947 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yata, N., Toyoda, T., Murakami, T. et al. Phosphatidylserine as a Determinant for the Tissue Distribution of Weakly Basic Drugs in Rats. Pharm Res 7, 1019–1025 (1990). https://doi.org/10.1023/A:1015935031933

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015935031933

Navigation