Dark Matter as a Cosmic Bose-Einstein Condensate and Possible Superfluid

Abstract

Dark matter arising from spontaneous symmetry breaking of a neutral scalar field coupled to gravity comprises ultra low mass bosons with a Bose-Einstein condensation temperature far above the present background temperature. Assuming galactic halos to consist of a Bose-Einstein condensate of astronomical extent, we calculate the condensate coherence length, transition temperatures, mass distribution, and orbital velocity curves, and deduce the particle mass and number density from the observed rotation curves for the Andromeda and Triangulum galaxies. We also consider the possibility of superfluid behaviour in the halos of rotating galaxies, and estimate the critical angular frequency and line density for formation of quantised vortices.

This is a preview of subscription content, log in to check access.

REFERENCES

  1. 1.

    Einstein, A. (1925). Sitzber. Kg. Preuss. Akad. Wiss. 261, 3.

    Google Scholar 

  2. 2.

    Anderson, M. H. et al. (1995). Science 269, 198.

    Google Scholar 

  3. 3.

    Cornell, E., quotation in joint news release by The National Institute of Standards and Technology and the University of Colorado on 13 July 1995, “Physicists Create New State of Matter at Record Low Temperature”, http://jilawww.colarado.edu/www/press/bose-ein.html.

  4. 4.

    Silverman, M. P. and Mallett, R. L. Gravity Research Foundation 2000 and 2001 Essays, GRF, Wellesley Hills, Massachusetts Meeting of the American Physical Society, Washington DC, Bull. Amer. Phys. Soc. (2001). 46, No. 2 148.

    Google Scholar 

  5. 5.

    Hu, W. et al. (2000). Phys. Rev. Lett. 85, 1158.

    Google Scholar 

  6. 6.

    de Bernardis, P. et al., (2000). Nature 404, 955; preprint astro-ph/0004404.

    Google Scholar 

  7. 7.

    Riess, A. G. et al. (1998). Astrophys. J. 116, 1009-1038; Perlmutter, S., et al. (1998) preprint astro-ph/9812133.

    Google Scholar 

  8. 8.

    Percival, W. J. et al. (2001). preprint astro-ph/0105252.

  9. 9.

    See, for example, Harrison, E. (2000). Cosmology: The Science of the Universe 2nd Ed. (Cambridge, New York). 391, 467

    Google Scholar 

  10. 10.

    Bergstrom, L. (2000). Rep. Prog. Phys. 63, 793.

    Google Scholar 

  11. 11.

    Avignone, F. T., Physics World 13, No. 4 (April)(2000); http://physicsweb.org/article/world/ 13/4/3.

  12. 12.

    Silverman, M. P. and Mallett, R. L. (2001). Class. Quantum Grav. 18, L37 and L103.

    Google Scholar 

  13. 13.

    Huang, K., Quarks, Leptons, & Gauge Fields, (World Scientific, Singapore, 1982) 52.

    Google Scholar 

  14. 15.

    Moreover, universal expansion has a negligible effect on the physics of systems small compared to the radius of curvature of the cosmological background. See Cooperstock, F. L. et al. (1998). Astron. J. 503, 61

  15. 16.

    Dolan, L. and Jackiw, R. (1974). Phys. Rev. D 9, 3320; Weinberg, S. (1974). Phys. Rev. Lett. 9, 3357.

    Google Scholar 

  16. 17.

    Callen, H. B. (1985). Thermodynamics 2nd Edition, Wiley, New York, 416.

    Google Scholar 

  17. 18.

    Huang, K. (1996). “Bose-Einstein Condensation and Superfluidity”, in Bose-Einstein Condensation, Eds. A. Griffin, D. W. Snoke, and S. Stringari, Cambridge University Press, Cambridge, 31.

    Google Scholar 

  18. 19.

    Dalfovo, F. et al. (1999). Rev. Mod. Phys. 71, 463.

    Google Scholar 

  19. 20.

    Kolb, E. W. and Turner, M. S. (1990). The Early Universe Addison-Wesley, Reading, 343.

  20. 21.

    Landau, L. D. and Lifshitz, E. M. (1980). Statistical Physics 3rd Edition, Part 1, Pergamon, Oxford, 182.

    Google Scholar 

  21. 23.

    Hodge, P. W. (1981). Atlas of the Andromeda Galaxy. University of Washington Press, Seattle.

    Google Scholar 

  22. 24.

    Silverman M. P. and Mallett, R. L. (2001). Bull. Amer. Phys. Soc. 46, No. 2 148.

    Google Scholar 

  23. 25.

    Gross, E. P. (1961). Nuovo Cimento 20, 454; Pitaevskii, L. P. (1961). Sov. Phys. JETP 13, 451.

    Google Scholar 

  24. 26.

    Rubin, V. C. (1986). in Highlights of Modern Astrophysics, Eds. Shapiro, S. L. and Teukolsky, S. A., Wiley, New York, 269.

    Google Scholar 

  25. 27.

    Madison, K. W. et al. (2000). Phys. Rev. Lett. 84, 806.

    Google Scholar 

  26. 28.

    Tilley, D. R. and Tilley, J. (1986). Superfluidity and Superconductivity, Adam Hilger, Bristol, 184–193.

    Google Scholar 

  27. 29.

    Su, F. S. O. and Mallett, R. L. (1980). Astrophys. J. 238, 1111.

    Google Scholar 

  28. 30.

    Zel'dovich, Ya. B (1970). Astron. Astrophys. 5, 84.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Silverman, M.P., Mallett, R.L. Dark Matter as a Cosmic Bose-Einstein Condensate and Possible Superfluid. General Relativity and Gravitation 34, 633–649 (2002). https://doi.org/10.1023/A:1015934027224

Download citation

  • Gravity
  • General Relativity
  • Symmetry breaking
  • Bose-Einstein condensate