Advertisement

General Relativity and Gravitation

, Volume 34, Issue 5, pp 633–649 | Cite as

Dark Matter as a Cosmic Bose-Einstein Condensate and Possible Superfluid

  • M. P. Silverman
  • R. L. Mallett
Article

Abstract

Dark matter arising from spontaneous symmetry breaking of a neutral scalar field coupled to gravity comprises ultra low mass bosons with a Bose-Einstein condensation temperature far above the present background temperature. Assuming galactic halos to consist of a Bose-Einstein condensate of astronomical extent, we calculate the condensate coherence length, transition temperatures, mass distribution, and orbital velocity curves, and deduce the particle mass and number density from the observed rotation curves for the Andromeda and Triangulum galaxies. We also consider the possibility of superfluid behaviour in the halos of rotating galaxies, and estimate the critical angular frequency and line density for formation of quantised vortices.

Gravity General Relativity Symmetry breaking Bose-Einstein condensate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Einstein, A. (1925). Sitzber. Kg. Preuss. Akad. Wiss. 261, 3.Google Scholar
  2. 2.
    Anderson, M. H. et al. (1995). Science 269, 198.Google Scholar
  3. 3.
    Cornell, E., quotation in joint news release by The National Institute of Standards and Technology and the University of Colorado on 13 July 1995, “Physicists Create New State of Matter at Record Low Temperature”, http://jilawww.colarado.edu/www/press/bose-ein.html.Google Scholar
  4. 4.
    Silverman, M. P. and Mallett, R. L. Gravity Research Foundation 2000 and 2001 Essays, GRF, Wellesley Hills, Massachusetts Meeting of the American Physical Society, Washington DC, Bull. Amer. Phys. Soc. (2001). 46, No. 2 148.Google Scholar
  5. 5.
    Hu, W. et al. (2000). Phys. Rev. Lett. 85, 1158.Google Scholar
  6. 6.
    de Bernardis, P. et al., (2000). Nature 404, 955; preprint astro-ph/0004404.Google Scholar
  7. 7.
    Riess, A. G. et al. (1998). Astrophys. J. 116, 1009-1038; Perlmutter, S., et al. (1998) preprint astro-ph/9812133.Google Scholar
  8. 8.
    Percival, W. J. et al. (2001). preprint astro-ph/0105252.Google Scholar
  9. 9.
    See, for example, Harrison, E. (2000). Cosmology: The Science of the Universe 2nd Ed. (Cambridge, New York). 391, 467Google Scholar
  10. 10.
    Bergstrom, L. (2000). Rep. Prog. Phys. 63, 793.Google Scholar
  11. 11.
    Avignone, F. T., Physics World 13, No. 4 (April)(2000); http://physicsweb.org/article/world/ 13/4/3.Google Scholar
  12. 12.
    Silverman, M. P. and Mallett, R. L. (2001). Class. Quantum Grav. 18, L37 and L103.Google Scholar
  13. 13.
    Huang, K., Quarks, Leptons, & Gauge Fields, (World Scientific, Singapore, 1982) 52.Google Scholar
  14. 15.
    Moreover, universal expansion has a negligible effect on the physics of systems small compared to the radius of curvature of the cosmological background. See Cooperstock, F. L. et al. (1998). Astron. J. 503, 61Google Scholar
  15. 16.
    Dolan, L. and Jackiw, R. (1974). Phys. Rev. D 9, 3320; Weinberg, S. (1974). Phys. Rev. Lett. 9, 3357.Google Scholar
  16. 17.
    Callen, H. B. (1985). Thermodynamics 2nd Edition, Wiley, New York, 416.Google Scholar
  17. 18.
    Huang, K. (1996). “Bose-Einstein Condensation and Superfluidity”, in Bose-Einstein Condensation, Eds. A. Griffin, D. W. Snoke, and S. Stringari, Cambridge University Press, Cambridge, 31.Google Scholar
  18. 19.
    Dalfovo, F. et al. (1999). Rev. Mod. Phys. 71, 463.Google Scholar
  19. 20.
    Kolb, E. W. and Turner, M. S. (1990). The Early Universe Addison-Wesley, Reading, 343.Google Scholar
  20. 21.
    Landau, L. D. and Lifshitz, E. M. (1980). Statistical Physics 3rd Edition, Part 1, Pergamon, Oxford, 182.Google Scholar
  21. 23.
    Hodge, P. W. (1981). Atlas of the Andromeda Galaxy. University of Washington Press, Seattle.Google Scholar
  22. 24.
    Silverman M. P. and Mallett, R. L. (2001). Bull. Amer. Phys. Soc. 46, No. 2 148.Google Scholar
  23. 25.
    Gross, E. P. (1961). Nuovo Cimento 20, 454; Pitaevskii, L. P. (1961). Sov. Phys. JETP 13, 451.Google Scholar
  24. 26.
    Rubin, V. C. (1986). in Highlights of Modern Astrophysics, Eds. Shapiro, S. L. and Teukolsky, S. A., Wiley, New York, 269.Google Scholar
  25. 27.
    Madison, K. W. et al. (2000). Phys. Rev. Lett. 84, 806.Google Scholar
  26. 28.
    Tilley, D. R. and Tilley, J. (1986). Superfluidity and Superconductivity, Adam Hilger, Bristol, 184–193.Google Scholar
  27. 29.
    Su, F. S. O. and Mallett, R. L. (1980). Astrophys. J. 238, 1111.Google Scholar
  28. 30.
    Zel'dovich, Ya. B (1970). Astron. Astrophys. 5, 84.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • M. P. Silverman
    • 1
  • R. L. Mallett
    • 2
  1. 1.Department of PhysicsTrinity CollegeHartford
  2. 2.Department of PhysicsUniversity of ConnecticutStorrs

Personalised recommendations