Skip to main content
Log in

Correlation of Partitioning of Nitroimidazoles in the n-Octanol/Saline and Liposome Systems with Pharmacokinetic Parameters and Quantitative Structure–Activity Relationships (QSAR)

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The partitioning of a series of nine nitroimidazole drugs in liposomes (log K m) of various compositions has been determined and compared to their partitioning in the n-octanol/saline system (log K) at 30°C. The log K m ranged from 1.5 to 0.5 and was three- to fourfold greater than the log K; further, the linear correlation coefficient was greatest when cholesterol (CHOL)-free liposomes were used. Functional-group contributions were compared from their hydrophobic substituent constants and, except in the case of RO-07-2044 and iodoazomycin riboside, yielded negative values in all systems. Literature values of four pharmacokinetic parameters obtained in dogs and acute LD50 values of the nitroimidazoles in BALB/c mice were highly correlated with log K or log K m only in CHOL-free liposomes. Comparing the relative sensitizing effect of the nitroimidazoles in murine EMT-6 or Chinese hamster V79 tumor cell cultures and their partition coefficients, the correlation in EMT-6 cells was poor, whereas the correlation in V79 cells was >0.9 when log K m was used but <0.6 when log K was used. Thus, the liposome model is a better predictor of nitroimidazole activity than the n-octanol/saline system and, also, it is a more flexible model for selecting the optimum conditions for QSAR studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Collander. Physiol. Plant 7:420–445 (1954).

    Google Scholar 

  2. C. Hansch and T. Fujita. J. Am. Chem. Soc. 86:1616–1626 (1964).

    Google Scholar 

  3. Y. Katz and J. M. Diamond. J. Membrane Biol. 17:121–154 (1974).

    Google Scholar 

  4. J. A. Rogers and S. S. Davis. Biochim. Biophys. Acta 598:392–404 (1980).

    Google Scholar 

  5. N. H. Anderson, S. S. Davis, M. James, and I. Kojima. J. Pharm. Sci. 72:443–448 (1983).

    Google Scholar 

  6. M. S. Ahmed, F. H. Ahmed, and I. W. Kellaway. Pharm. Res. 2:119–124 (1985).

    Google Scholar 

  7. G. V. Betageri and J. A. Rogers. Int. J. Pharm. 36:165–173 (1987).

    Google Scholar 

  8. G. V. Betageri and J. A. Rogers. Int. J. Pharm. 46:95–102 (1988).

    Google Scholar 

  9. G. V. Betageri, Y. Theriault, and J. A. Rogers. 2nd National Meeting, AAPS, Boston (1987).

  10. D. W. Siemann. In J. D. Chapman and G. F. Whitmore (eds.), Chemical Modifiers of Cancer Treatment. Part 2, Pergamon Press, Toronto, 1984, pp. 1585–1594.

    Google Scholar 

  11. J. M. Brown and P. Workman. Radiat. Res. 82:171–190 (1980).

    Google Scholar 

  12. D. C. Jette, L. I. Wiebe, R. J. Flanagan, J. Lee, and J. D. Chapman. Radiat. Res. 105:169–179 (1986).

    Google Scholar 

  13. J. A. Rogers and A. Wong. Int. J. Pharm. 6:339–348 (1980).

    Google Scholar 

  14. N. B. Chapman and J. Shorter. In J. D. Chapman and J. Shorter (eds.), Advances in Linear Free Energy Relationships, Plenum Press, New York, 1972, pp. 71–117.

    Google Scholar 

  15. J. Shorter. In J. Shorter (ed.), Correlation Analysis in Organic Chemistry. An Introduction to Linear Free Energy Relationships, Oxford University Press, 1973, pp. 8–31.

  16. C. Hansch and A. Leo. Substituent Constants for Correlation Analysis in Chemistry and Biology, John Wiley & Sons, New York, 1979.

    Google Scholar 

  17. J. de Gier, M. C. Blok, P. W. M. van Dijck, C. Mombers, A. J. Verkley, E. C. M. van der Neut-Kok, and L. L. van Deenen. Ann. N.Y. Acad. Sci. 308:85–99 (1978).

    Google Scholar 

  18. L. Ter-Minassian-Saraga and G. Madelmont. FEBS Lett. 137:137–140 (1982).

    Google Scholar 

  19. R. A. S. White, P. Workman, and J. M. Brown. Radiat. Res. 84:542–561 (1980).

    Google Scholar 

  20. J. M. Brown, N. Y. Yu, D. M. Brown, and W. W. Lee. Int. J. Radiat. Oncol. Biol. Phys. 7:695–703 (1981).

    Google Scholar 

  21. E. R. Cooper, B. Berner, and R. D. Bruce. J. Pharm. Sci. 70:57–59 (1981).

    Google Scholar 

  22. J. D. Chapman, J. Lee, and B. E. Meeker. Int. J. Radiat. Oncol., in press (1988).

  23. J. D. Chapman, J. A. Raleigh, J. Borsa, R. G. Webb, and R. Whitehouse. Int. J. Radiat. Biol. 17:475–482 (1972).

    Google Scholar 

  24. J. A. Raleigh, J. D. Chapman, J. Borsa, W. Kremers, and A. P. Reuvers. Int. J. Radiat. Biol. 23:377–387 (1973).

    Google Scholar 

  25. G. E. Adams, I. R. Flockhart, C. E. Smithen, I. J. Stratford, P. Wardman, and M. E. Watts. Radiat. Res. 67:9–20 (1976).

    Google Scholar 

  26. R. E. Brown and B. J. Brown. In QSAR Des. Bioact. Compd., Prous, Barcelona, Spain, 1984, pp. 13–24.

    Google Scholar 

  27. F. A. P. C. Gobas, J. M. Lahittete, G. Garofalo, W. Y. Shiu, and D. MacKay. J. Pharm. Sci. 77:265–272 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betageri, G.V., Rogers, J.A. Correlation of Partitioning of Nitroimidazoles in the n-Octanol/Saline and Liposome Systems with Pharmacokinetic Parameters and Quantitative Structure–Activity Relationships (QSAR). Pharm Res 6, 399–403 (1989). https://doi.org/10.1023/A:1015931431817

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015931431817

Navigation