Skip to main content
Log in

Hawking Radiation of a Non-Stationary Kerr-Newman Black Hole: Spin-Rotation Coupling Effect

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Hawking evaporation of Klein-Gordon and Dirac particles in a non-stationary Kerr-Newman space-time is investigated by using a method of generalized tortoise coordinate transformation. The location and the temperature of the event horizon of a non-stationary Kerr-Newman black hole are derived. It is shown that the temperature and the shape of the event horizon depend not only on the time but also on the angle. However, the Fermionic spectrum of Dirac particles displays a new spin-rotation coupling effect which is absent from that of Bosonic distribution of scalar particles. The character of this effect is its obvious dependence on different helicity states of particles spin-1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hawking, S. W. (1974). Nature, 248, 30; (1975). Commun. Math. Phys. 43, 199.

    Google Scholar 

  2. Frolov, V. P. and Novikov, I. D. (1998). Black Hole Physics: Basic Concepts and New Developments, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  3. Zhao, Z. (1999). Thermal Properties of Black Holes and Singularities of Space-times: Quantum Effect near the Null Surface, Beijing Normal University Press, Beijing, in Chinese.

    Google Scholar 

  4. Hartle, B. and Hawking, S. W. (1976). Phys. Rev. D 13, 2188; Wald, R. M. (1975). Commun. Math. Phys. 45, 9; Unruh, W. G. (1976). Phys. Rev. D 14, 870; Israel, W. (1976). Phys. Lett. A 57, 107; Punsly, B. (1992). Phys. Rev. D 46, 1288, 1312; Brout, R., Massar, S., Parentani, R. and Spindel, Ph. (1995). Phys. Rep. 260, 329.

    Google Scholar 

  5. Khanal, U. (1983). Phys. Rev. D 28, 1291; Khanal, U. and Panchapakesan, N. (1981). Phys. Rev. D 24, 829, 835; Ahmed, M. (1991). Phys. Lett. B 258, 318; Ahmed, M. and Mondal, A. K. (1995). Int. J. Theor. Phys. 34, 1871.

    Google Scholar 

  6. Wu, S. Q. and Cai, X. (2000). Nuovo Cimento B 115, 143; (2000). Int. J. Theor. Phys. 39, 2215.

    Google Scholar 

  7. Zhao, Z., Dai, X. X. and Huang, W. H. (1993). Acta Astrophysica Sinica, 13, 299 (in Chinese); Luo, M.W. (2000). Acta Physica Sinica 49, 1035 (in Chinese); Jing, J. L. andWang, Y. J. (1997). Int. J. Theor. Phys. 36, 1745.

    Google Scholar 

  8. Zhao, Z., Yang, C. Q. and Ren, Q. A. (1992). Gen. Rel. Grav. 26, 1055; Li, Z. H. and Zhao, Z. (1993). Chin. Phys. Lett. 10, 126; Zhu, J. Y., Zhang, J. H. and Zhao, Z. (1994). Int. J. Theor. Phys. 33, 2137; Ma, Y. and Yang, S. Z. (1993). Ibid. 32 (1993) 1237.

    Google Scholar 

  9. Chandrasekhar, S. (1983). The Mathematical Theory of Black Holes, Oxford University Press, New York; Page, D. (1976). Phys. Rev. D 14, 1509.

    Google Scholar 

  10. Wu, S. Q. and Cai, X. (2001). Chin. Phys. Lett. 18, 485; (2001). Gen. Rel. Grav. 33, 1181.

    Google Scholar 

  11. Wu, S. Q. and Cai, X. (2001). Int. J. Theor. Phys. 40, 1349; (2001). Mod. Phys. Lett. A16, 1549.

    Google Scholar 

  12. Gonzalez, C., Herrera, L. and Jimenez, J. (1979). J. Math. Phys. 20, 837; Jing, J. L. and Wang, Y. J. (1996). Int. J. Theor. Phys. 35, 1481.

    Google Scholar 

  13. Carmeli, M. and Kaye, M. (1977). Ann. Phys. NY 103, 97; Carmeli, M. (1982). Classical Fields: General Relativity and Gauge Theory, John Wiley & Sons, New York.

    Google Scholar 

  14. Xu, D. Y. (1998). Class. Quant. Grav. 15, 153; (1998). Chin. Phys. Lett. 15, 706.

    Google Scholar 

  15. Damour, T. and Ruffini, R. (1976). Phys. Rev. D 14, 332; Sannan, S. (1988). Gen. Rel. Grav. 20, 239.

    Google Scholar 

  16. Newman, E. and Penrose, R. (1962). J. Math. Phys. 3, 566.

    Google Scholar 

  17. Bonnor, W. and Vaidya, P. (1970). Gen. Rel. Grav. 1, 127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S.Q., Cai, X. Hawking Radiation of a Non-Stationary Kerr-Newman Black Hole: Spin-Rotation Coupling Effect. General Relativity and Gravitation 34, 605–617 (2002). https://doi.org/10.1023/A:1015929926316

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015929926316

Navigation