Skip to main content
Log in

The Area Function Method for Assessing the Drug Absorption Rate in Linear Systems with Zero-Order Input

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

A noncompartmental approach for determination of the apparent zero-order absorption rate constant (k 0) has been developed. The procedure evolves from the convolution integral and requires individual oral-dose plasma concentration values and calculation of area intervals under the plasma concentration–time curves after intravenous administration. The proposed method was evaluated and compared with the Wagner–Nelson, Loo–Riegelman, deconvolution, nonlinear regression, and moment methods using errorless and errant simulation data for one- or two-compartment models. The area function method is generally equal to the best of these techniques (nonlinear regression) and superior to the weaker methods (moment, deconvolution, Loo–Riegelman), especially for errant two-compartment data. Coupled with a companion procedure for constructing fraction absorbed versus time plots and assessing first-order absorption rate constants, the area function methods offer direct and accurate means of discerning drug absorption kinetics without the need for assignment of a disposition model for drugs with linear elimination kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. H. Lewis (ed). Controlled Release of Pesticides and Pharmaceuticals, Plenum, New York, 1981.

    Google Scholar 

  2. J. G. Wagner and E. J. Nelson. J. Pharm. Sci. 52:610–611 (1963).

    Google Scholar 

  3. J. C. K. Loo and S. Riegelman. J. Pharm. Sci. 57:918–928 (1968).

    Google Scholar 

  4. L. Z. Benet and C.-W. N. Chiang. In Abstracts of Papers Presented at the 13th National Meeting of the APhA Academy of Pharmaceutical Sciences, Chicago, 1972, Vol. 2, pp. 169–171.

    Google Scholar 

  5. C. M. Metzler. J. Biometr. 30:562 (1974).

    Google Scholar 

  6. S. Riegelman and P. Collier. J. Pharmacokin. Biopharm. 8:509–534 (1980).

    Google Scholar 

  7. A. Rescigno and G. Segre, Drug and Tracer Kinetics, Blaisdell, Waltham, Mass., 1966.

    Google Scholar 

  8. D. P. Vaughan and M. Dennis. J. Pharm. Sci. 67:663–665 (1978).

    Google Scholar 

  9. H. Cheng, A. E. Staubus, and L. Shum. Pharm. Res. 5:57–60 (1988).

    Google Scholar 

  10. J. G. Wagner. Biopharm. Drug Disp. 5:75–83 (1984).

    Google Scholar 

  11. S. A. Kaplan, R. E. Weinfeld, C. W. Abruzzo, and M. Lewis. J. Pharm. Sci. 61:773–778 (1972).

    Google Scholar 

  12. C. M. Metzler, and D. L. Weiner. NONLIN84-User's Guide, Statistical Consultants, Inc., Lexington, Ky., 1984.

    Google Scholar 

  13. K. K. H. Chan and M. Gibaldi. J. Clin. Pharmacol. 26:255–259 (1984).

    Google Scholar 

  14. I. H. Patel, L. Bornemann, and W. A. Colburn, J. Pharm. Sci. 74:359–360 (1985).

    Google Scholar 

  15. J. P. Skelly. Pharm. Int. 7:280–286 (1986).

    Google Scholar 

  16. M. Gibaldi and D. Perrier. Pharmacokinetics, 2nd ed., Marcel Dekker, New York, 1982, pp. 150–152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, H., Jusko, W.J. The Area Function Method for Assessing the Drug Absorption Rate in Linear Systems with Zero-Order Input. Pharm Res 6, 133–139 (1989). https://doi.org/10.1023/A:1015928509101

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015928509101

Navigation