Skip to main content
Log in

Stability of Phenobarbital N-Glucosides: Identification of Hydrolysis Products and Kinetics of Decomposition

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The two diastereomers of l-(l-β-D-glucopyranosyl)phenobarbital, (1A) and (1B), decompose to l-(l-β-D-glucopyranosyl)-3-(2-ethyl-2-phenylmalonyl)urea (2A or 2B) followed by decarboxylation to l-(l-β-D-glucopyranosyl)-3-(2-phenylbutyryl)urea (3A and 3B) under physiological conditions of temperature and pH. The sigmoidal pH–rate profile and the Arrhenius parameters indicate that degradation takes place by hydroxide ion attack on the undissociated and monoanion forms of 1A and 1B. The rates of hydrolysis of the nonionized species of 1A and 1B are more than two orders of magnitude faster than those of common 5,5-disubstituted or 1,5,5-trisubstituted barbiturates. Molecular modeling studies suggest that rate enhancement is due to intramolecular hydrogen bonding in the transition state of the C2′ hydroxyl with the tetrahedral hydrated C6 carbonyl as well as hindered rotation around the N1–C1′ of phenobarbital and glucose. Based on these studies it is recommended that any data related to the quantitation of 1A and 1B be reevaluated depending on how the samples were collected, stored, and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. K. Tang, W. Kalow, and A. A. Grey. Res. Commun. Chem. Pathol. Pharmacol. 21:45–53 (1978).

    Google Scholar 

  2. W. H. Soine, P. J. Soine, B. W. Overton, and L. K. Garrettson. Drug Metab. Disp. 14:619–621 (1986).

    Google Scholar 

  3. B. K. Tang, W. Kalow, and A. A. Grey. Drug Metab. Disp. 7:315–318 (1979).

    Google Scholar 

  4. D. Kadar, B. K. Tang, and A. W. Conn. Can. Anaesth. Soc. J. 29:16–23 (1982).

    Google Scholar 

  5. B. K. Tang, B. Yilmaz, and W. Kalow. Biomed. Mass Spectrom. 11:462–465 (1984).

    Google Scholar 

  6. W. H. Soine, V. O. Bhargava, and L. K. Garrettson. Drug Metab. Disp. 12:792–794 (1984).

    Google Scholar 

  7. V. O. Bhargava, W. H. Soine, and L. K. Garrettson. J. Chromatogr. 343:219–223 (1985).

    Google Scholar 

  8. V. J. Bhargava and L. K. Garrettson. Dev. Pharm. Ther. 11:8–13 (1988).

    Google Scholar 

  9. W. H. Soine, P. J. Soine, T. M. England, B. W. Overton, and S. Merat. Carbohydr. Res. (submitted for publication).

  10. C. R. Clark and J. Chan. Anal. Chem. 50:635–637 (1978).

    Google Scholar 

  11. A. Albert and E. P. Serjeant. The Determination of Ionization Constants, A Laboratory Manual, 3rd ed., Chapman and Hall, New York, 1971, pp. 70–101.

    Google Scholar 

  12. J. J. P. Stewart. QCPE Bull. 6:24 (1986).

    Google Scholar 

  13. F. Fretwurst. Arzneim. Forsch. 8:44–50 (1958).

    Google Scholar 

  14. M. E. Krahl. J. Phys. Chem. 44:449–462 (1946).

    Google Scholar 

  15. R. G. Duggleby. Anal. Biochem. 110:9–18 (1981).

    Google Scholar 

  16. E. R. Garrett, J. T. Bojarski, and G. J. Yakatan. J. Pharm. Sci. 60:1145–1154 (1971).

    Google Scholar 

  17. J. S. Nelder and R. Mead. Comput. J. 7:308–313 (1965).

    Google Scholar 

  18. Statistical Consultants, Inc. Am. Stat. 40:52 (1986).

    Google Scholar 

  19. K. A. Connors, G. L. Amidon, and V. J. Stella. Chemical Stability of Pharmaceuticals: A Handbook for Pharmacists, 2nd ed., John Wiley and Sons, New York, 1986, pp. 8–62.

    Google Scholar 

  20. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart. J. Am. Chem. Soc. 107:3902–3909 (1985).

    Google Scholar 

  21. J. T. Bojarski, J. L. Mokrosz, H. J. Barton, and M. H. Paluchowska. Adv. Heterocycl. Chem. 38:229–297 (1985).

    Google Scholar 

  22. E. L. Eliel. Stereochemistry of Carbon Compounds, McGraw-Hill, New York 1962, pp. 384–393.

    Google Scholar 

  23. J. C. Jochims, H. von Voithenberg, and G. Wegner. Chem. Ber. 111:2745–2756 (1978).

    Google Scholar 

  24. J. C. Jochims, H. von Voithenberg, and G. Wegner. Chem. Ber. 111:1693–1708 (1978).

    Google Scholar 

  25. P. J. Robinson. J. Chem. Ed. 55:509–510 (1978).

    Google Scholar 

  26. K. B. Wiberg. Physical Organic Chemistry, J. Wiley and Sons, New York, 1964, pp. 377–379.

    Google Scholar 

  27. K. R. Lynn. J. Phys. Chem. 69:687–689 (1965).

    Google Scholar 

  28. See Ref. 26, pp. 390–393.

    Google Scholar 

  29. E. F. Hammel, Jr., and S. Glasstone. J. Am. Chem. Soc. 76:3741–3745 (1954).

    Google Scholar 

  30. A. B. Foster, A. H. Haines, and M. Stacey. Tetrahedron 16:177–185 (1961).

    Google Scholar 

  31. S. M. Kupchan, S. P. Eriksen, and M. Friedman. J. Am. Chem. Soc. 88:343–346 (1966).

    Google Scholar 

  32. S. M. Kupchan, S. P. Eriksen, and Y.-T. S. Liang. J. Am. Chem. Soc. 88:347–350 (1966).

    Google Scholar 

  33. R. W. Wright and R. H. Marchessault. Can. J. Chem. 46:2567–2575 (1968).

    Google Scholar 

  34. H. B. Henbest and B. J. Lovell. J. Chem. Soc. 1965–1969 (1957).

  35. T. C. Bruice and T. H. Fife. J. Am. Chem. Soc. 84:1973–1979 (1962).

    Google Scholar 

  36. G. Buemi, F. Zuccarello, and A. Randino. J. Mol. Struct. (Theochem.) 164:379–389 (1988).

    Google Scholar 

  37. J. H. Maguire, T. C. Butler, and K. H. Dudley. Drug Metab. Disp. 10:595–598 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vest, F.B., Soine, W.H., Westkaemper, R.B. et al. Stability of Phenobarbital N-Glucosides: Identification of Hydrolysis Products and Kinetics of Decomposition. Pharm Res 6, 458–465 (1989). https://doi.org/10.1023/A:1015908221339

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015908221339

Navigation