Skip to main content
Log in

Adsorption of Fluorescein Dyes on Albumin Microspheres

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The surface characteristics of bovine and egg albumin microspheres were examined using four anionic dyes; sodium fluorescein, eosin, erythrosin, rose bengal, and the cationic dye rhodamine B. The adsorption isotherms of the dyes on unloaded albumin microspheres exhibited Langmuir behavior for dilute solutions of rose bengal, erythrosin, and eosin, suggesting monolayer formation in the initial stages of the sorption process. The adsorption capacity of the microspheres for the dyes (k 2) and the affinity constants of the dyes for the microspheres (k 1) were found to depend on both the polarizability and the hydrophobic properties of the dye, presumably reflecting the heterogeneous character of the microsphere surface. Further, the extent of sorption at higher dye concentrations was found to depend on the ability of the dye to form stable aggregates inside the microspheres and on environmental long-range forces acting at these sites. At both low and high dye concentrations, the amount adsorbed to the microsphere surface increased with increasing hy-drophobicity of the dyes. The lowest adsorption was observed for the nonsubstituted dye fluorescein, whereas the most hydrophobic dye used, rose bengal, was completely adsorbed onto the microsphere surface. The data suggest that the bovine albumin microsphere surfaces are highly hydrophobic and less porous than egg albumin microsphere surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Trouet, D. D. Campeneere, M. D. S. Maleugreaux, and G. Atassi. Experimental leukemia chemotherapy with a “lysosomotropic” adriamycin DNA complex. Eur. J. Cancer 10:405–411 (1974).

    Google Scholar 

  2. G. Cornu, J. L. Michaux, G. Sokal, and A. Trouet. Daunorubicin-DNA: Further clinical trails in acute non-lymphoblastic leukemia. Eur. J. Cancer 10:695–700 (1974).

    Google Scholar 

  3. K. Egbaria, C. Ramachandran, D. Kittayanoad, and N. Weiner. Topical delivery of liposomally encapsulated interferon evaluated by in vitro diffusion studies. Antimicrob. Chemother. Agents 34:107–110 (1990).

    Google Scholar 

  4. R. R. Martodam, D. Y. Twumasi, I. E. Liener, J. C. Powers, N. Nishino, and G. Krejcarek. Albumin microspheres as carrier of an inhibitor of leukocyte elastase: Potential therapeutic agent for emphysema. Proc. Natl. Acad. Sci. USA 76(5):2128–2132 (1979).

    Google Scholar 

  5. K. J. Widder, G. Flouret, and A. Senyei. Magnetic microspheres synthesis of a novel parenteral drug carrier. J. Pharm. Sci. 68:81–94 (1979).

    Google Scholar 

  6. K. Egbaria and M. Friedman. Sustained release albumin microspheres containing antibacterial drugs: Effects of preparation conditions on kinetics of drug release. J. Control. Release 14:79–94 (1990).

    Google Scholar 

  7. K. Sugibayashi, Y. Morimoto, T. Nadai, Y. Kato, A. Hasegawa, and T. Arita. Preparation and tissue distribution in mice of microsphere-entrapped 5-fluorouracil. Chem. Pharm. Bull. 27:204–209 (1976).

    Google Scholar 

  8. E. Tomlinson, J. J. Burger, J. G. Mcvie, and K. Hoetuagel. In J. M. Anderson, and S. W. Kim (eds.), Recent Advances in Drug Delivery Systems, Plenum Press, New York, 1983.

    Google Scholar 

  9. U. Scheffel, B. A. Rhodes, T. Natarajan, and H. N. Wagner. Albumin microspheres for study of the reticuloendothelial system. J. Nucl. Med. 13:498–503 (1972).

    Google Scholar 

  10. E. Tomlinson. Microsphere delivery systems for drug targeting and controlled release. Int. J. Pharm. Tech. Mfr. 4(3):49–57 (1983).

    Google Scholar 

  11. L. Arbeloa. Dimeric and trimeric states of the fluorescein dianion. J. Chem. Soc. Faraday Trans. 2:77:1725–1733 (1981).

    Google Scholar 

  12. K. K. Rohatgi and A. K. Mukhopadhyay. Aggregation properties of anions of fluorescein and halofluorescein dyes. J. Indian Chem. Soc. 49(12):1311–1320 (1972).

    Google Scholar 

  13. A. Suggett. The physics and physical chemistry of water. In F. Franks (eds.), Water—A Comprehensive Treatise, Plenum Press, New York-London, 1972, Vol. 1, Chap. 14.

    Google Scholar 

  14. A. N. Glazer. Proc. Natl. Acad. Sci. USA 65:1057 (1970).

    Google Scholar 

  15. K. Egbaria and M. Friedman. Physico-chemical properties of albumin microspheres using spectroscopic studies. J. Pharm. Sci. 81:186–190 (1992).

    Google Scholar 

  16. K. K. Rohatgi and A. K. Mukhopadhyay. Thermodynamics of dye dimerization. Chem. Phys. Lett. 12(2):259–260 (1971).

    Google Scholar 

  17. K. K. Rohatgi and G. S. Singhal. Nature of bonding in dye aggregates. J. Phys. Chem. 70:1695–1701 (1965).

    Google Scholar 

  18. L. Arbeloa and P. Ruiz Ojeda. Chem. Phys. Lett. 87:556–560 (1974).

    Google Scholar 

  19. A. Leo, C. Hansch, and D. Elkins. Partition coefficients and their uses. Chem. Rev. 71(6):525–616 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egbaria, K., Friedman, M. Adsorption of Fluorescein Dyes on Albumin Microspheres. Pharm Res 9, 629–635 (1992). https://doi.org/10.1023/A:1015897909739

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015897909739

Navigation