Skip to main content
Log in

Probing the surface polarity of native celluloses using genuine solvatochromic dyes

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The surface polarity of native celluloses has been investigated by the following solvatochromic dyes: dicyano-bis (1,10)-phenanthroline iron (II) Fe(phen)2 (CN)2 (1), bis(4-N,N-dimethylamino)-benzophenone (2), and cou-marine 153 (3). Linear Solvation Energy (LSE) relationships and the UV/Vis data have been used to characterize the surface polarity of different native cellulose batches in terms of the empirical Kamlet–Taft polarity parameters α (hydrogen bond acidity), β (hydrogen bond basicity), and π * (dipolarity/polarizability). α, β, π *and calculated Reichardt's E T (30) values are reported for various native and regenerated cellulose samples with different degrees of crystallinity. The degree of crystallinity of the cellulose samples has been determined by X-ray. The microcrystalline environment of cellulose can be exactly parameterized in terms of the α, β and π *values. It shows a fairly strong acidity α and a low dipolarity/polarizability. For the amorphous sections smaller α and larger π * values are observed. The correspondence of the empirical polarity parameters determined has been discussed in relation to results from pyrene fluorescence and zetapotential measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brune B.J., Payne G.F. and Chaubal M.V. 1997. Linear solvation energy relationships to explain interactions responsible for solute adsorption onto a polar polymeric sorbent. Langmuir 13: 5766–5769.

    Google Scholar 

  • Dong D.C. and Winnik M.A. 1984. The Py scale of solvent polarities. Can. J. Chem. 62: 2560–2565.

    Google Scholar 

  • Fischer K., Prause S., Spange S., Cichos F. and v. Borczyskowski C. 2002. Coumarin 151 and 153 as Solvatochromic Probes for Evaluating the Dipolarity/Polarizability of Cellulose Derivates. J. Polym. Sci. B (submitted).

  • Fischer K. and Spange S. 2000. Empirical surface polarity parameters for native polysaccharides. Macromol. Chem. Phys. 201: 1922–1929.

    Google Scholar 

  • Fischer S., Brendler E., Leipner H., Schenzel K., Fischer K., Schmidt I. et al. 2002. Vergleichende Strukturuntersuchungen an Cellulose. Das Papier (in press).

  • Gutmann V. 1976. Solvent effects on the reactivities of organometallic compounds. Coord. Chem. Rev. 18: 225–240.

    Google Scholar 

  • Hansch C. and Fujita I. 1964. p-σ-π-Analysis. A method for the correlation of biological activity and chemical structure. J. Am.Chem. Soc. 86: 1616–1626.

    Google Scholar 

  • Helburn R.S., Rutan S.C., Pompano J., Mitehern D. and Patterson W.T. 1994. Solvatochromis studies of solvated chromatographic stationary phases. Anal. Chem. 66: 610–618.

    Google Scholar 

  • Ilharco L.M., Garcia A.R., da Silva J.L. and Ferreira L.F.V. 1997. Infrared approach to the study of adsorption on cellulose: influence of cellulose crystallinity on the adsorption of benzophenone. Langmuir 13: 4162–4132.

    Google Scholar 

  • Jensen W.B. 1991. Overview lecture – The Lewis acid-base concepts: recent results and prospects for the future. In: Mittal K.L. and Anderson H.R. (eds), Acid-Base-Interactions. VSP, Utrecht, pp. 1–13.

    Google Scholar 

  • Kamlet M.J.D., Abboud J.-L.M., Abraham, M.H. and Taft R.W. 1983. Linear solvation energy relationship 23.Acomprehensive collection of the solvatochromic parameters π*α, and β, and some methods for simplifying the generalised solvatochromic equation. J. Org. Chem. 48: 2877–2887.

    Google Scholar 

  • Marcus Y. 1991. The Effectiveness of Solvents as Hydrogen Bond Donor. J. Sol. Chem. 20: 929–944.

    Google Scholar 

  • Marcus Y. 1993. The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev.: 409–416.

  • Moorthy I.N., Shevchenko T., Magon A. and Bohne C. 1998. Paper acidity estimation: Application of pH-dependent fluorescence probes. J. Photochem. Photobiol. A, Chem. 113: 189–195.

    Google Scholar 

  • Novaki L.P. and El Seoud O.A. 1996. Solvatochromism in alcohol-water mixtures: Effects of the molecular structure of the probe. er. Bunsenges. Phys. Chem. 100: 648–655.

    Google Scholar 

  • Papirer E., Brendle E., Balard H. and Vergelati C. 2000. Inverse gas chromatography investigation of surface properties of cellulose. J. Adhesion Sci. Technol. 14: 321–337.

    Google Scholar 

  • Park J.H. and Carr P.W. 1989. Interpretation of normal-phase solvent strength scales based on linear solvation energy relationships using the solvatochromic parameters π*α,and β. J. Chromatogr. 465: 123–136.

    Google Scholar 

  • Reichardt C. 1988. Solvents and Solvent effects in Organic Chemistry. 2nd edn. VCH, Weinheim, and references therein.

    Google Scholar 

  • Reichardt C. 1994. Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94: 2319–2358.

    Google Scholar 

  • Rutan S.C., Carr P.W. and Taft R.W. 1989. Solvatochromic linear solvation energy relationship for gas-liquid partition coefficients. J. Phys. Chem. 93: 4292–4297.

    Google Scholar 

  • Rutan S.C. and Harris J.M. 1993. Electronic spectroscopic investigations of the stationary phase in reversed-phase liquid chromatography. J Chromatogr. A 656: 197–215.

    Google Scholar 

  • Spange S., Vilsmeier E., Renter A., Fischer K., Prause S., Zimmermann I. et al. 2000. Empirical polarity parameters for various macromolecular and related materials. Macromol. Rapid Commun. 21: 643–659.

    Google Scholar 

  • Spange S., Simon F., Heublein G., Jacobasch H.-J. and Börner M. 1991. Donator acceptor behaviour of aerosil in several organic liquids. J. Colloid Polym. Sci. 269: 173–178.

    Google Scholar 

  • Spange S., Reuter A. and Vilsmei E. 1996. On the determination of polarity parameters of silica by means of solvatochromic probe dyes. J. Colloid Polym. Sci. 274: 59–69.

    Google Scholar 

  • Spange S. and Reuter A. 1999. Hydrogen-bond donating and dipolarity/polarizability properties of chemically functionalized silica particles. Langmuir 15: 141–150.

    Google Scholar 

  • Spange S., Reuter A. and Lubda D. 1999. ET(30) surface polarity parameters of alkyl and aryl-group-functionalized silica particles – differentiating the surface environments by means of application of differently substituted Reichardt's dyes. Langmuir 15: 2103–2111.

    Google Scholar 

  • Spange S., Heinze Th. and Klemm D. 1992.On the polarity and donor-acceptor properties of polysaccharides: I. Investigations on the acceptor properties of cellulose acetates by means of the solvatochromic technique. Polymer Bull. 28: 697–702.

    Google Scholar 

  • Spange S., Reuter A., Vilsmeier E., Keutel D., Heinze Th. and Linert W. 1998. Determination of empirical polarity parameters of the cellulose solvent N,N-dimethylacetamide/LiCl by means of the solvatochromic technique. J. Polym. Sci. 36: 1945–1955.

    Google Scholar 

  • Spange S., Schmidt C. and Kricheldorf H.R. 2001. Probing the surface polarity of poly-α-amino acids and amino acid crystals with genuine solvatochromic dyes. Langmuir 17: 856–865.

    Google Scholar 

  • Spange S. and Keutel D. 1992. 4,4′-Bis(dimethylamino)benzophenon (Michlers keton) – ein universeller Indikator zur Bestimmung der Acidität, Dipolarität/Polarisierbarkeit von Reaktionsmedien. Liebigs Ann. Chem.: 423–428.

  • Spange S., Keutel D. and Simon F. 1992. Approaches to empirical donor-acceptor and polarity parameters of polymers in solution and at interface. J. Chim. Phys. 89: 1615–1622.

    Google Scholar 

  • Spange S., Graeser A. and Zimmermann Y. 1999. Hydrogen-bond donating acidity and dipolarity/polarizability of surfaces within silica gels and mesoporous MCM-41 materials. Chem. Mat. 11: 3245–3251.

    Google Scholar 

  • Spange S., Reuter A., Prause S. and Bellmann C. 2000. Electrokinetic and solvatochromic studies of functionalized silica particles. J. Adhesion. Sci. Technol. 14: 399–414.

    Google Scholar 

  • Schilt A.A. 1960. Mixed ligand complexes of iron (II) and (III) with cyanide and aromatic di-imines. J. Am. Chem. Soc. 82: 3000–3004.

    Google Scholar 

  • Simon F., Jacobasch H.J. and Spange S. 1998. The versatile surface properties of poly(cyclopentadiene)-modified silica particles (PCPD-silica): XPS and electrokinetic studies. Coll. Polym. Sci. 276: 930–939.

    Google Scholar 

  • Taft R.W. and Kamlet M.J. 1979. Linear solvation energy relationships part 4. Correlations with and limitations of the _ scale of solvent hydrogen bond donor acidities. J. Chem. Soc., Perkin Trans. 2: 1723–1727.

    Google Scholar 

  • Tshabala M.A. 1997. Determination of the acid-base characteristics of lignocellulosic surfaces by inverse gas chromatography. J. Appl. Polym. Sci. 65: 1013–1020.

    Google Scholar 

  • Yamamoto K., Yonemuchi E., Oguchi T. and Tozuka Y. 1998. Fluorometric studies of pyrene adsorption on porous crystalline cellulose. J. Coll. Interface Sci. 205: 510–515.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Spange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

fischer, K., Spange, S., Fischer, S. et al. Probing the surface polarity of native celluloses using genuine solvatochromic dyes. Cellulose 9, 31–40 (2002). https://doi.org/10.1023/A:1015896629947

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015896629947

Navigation