Skip to main content
Log in

Pharmacokinetics of Zopolrestat, a Carboxylic Acid Aldose Reductase Inhibitor, in Normal and Diabetic Rats

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The pharmacokinetics of zopolrestat, a carboxylic acid aldose reductase inhibitor, were examined in normal male rats dosed intravenously at 2 mg/kg and in normal and streptozotocin-diabetic male rats after oral administration at 50 mg/kg. After oral dosing, C max was 127 µg/ml for normal rats and 144 µg/ml for diabetic rats. AUC(0–∞), however, was lower for diabetic rats than for normal rats and plasma half-life was longer in normal rats (8.0 vs 6.6 hr). Half-lives of zopolrestat in nerve, kidney, and lens were longer than plasma half-life and were similar for both diabetic and normal rats. Less than 2% of the dose was excreted in the urine as unchanged zopolrestat during the 48-hr period following dosing by diabetic or normal rats. Protein binding of zopolrestat was less extensive in plasma from diabetic rats than in plasma from normal rats. Similar kinetics were observed in diabetic animals receiving-five daily doses of zopolrestat at 50 mg/kg/day. There was no plasma or liver accumulation of zopolrestat at steady state, consistent with the observed half-lives. However, zopolrestat did accumulate in nerve, kidney, and lens to varying degrees during multiple dosing, reflecting the longer half-lives of zopolrestat in these tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Raskin and J. Rosenstock. Aldose reductase inhibitors and diabetic complications. Am. J. Med. 83:298–306 (1987).

    Google Scholar 

  2. J. H. Kinoshita and C. Nishimura. The involvement of aldose reductase in diabetic complications. Diabetes/Metabol. Rev. 4:323–337 (1988).

    Google Scholar 

  3. P. H. Whiting and I. S. Ross. Increased nerve polyol levels in experimental diabetes and their reversal by sorbinil. Br. J. Exp. Pathol. 69:697–702 (1988).

    Google Scholar 

  4. A. Beyers-Mears, E. Cruz, P. Dillon, D. Tanis, and M. Roche. Glomerular polyol accumulation in diabetes and its prevention by oral sorbinil. Diabetes 33:604–607 (1984).

    Google Scholar 

  5. A.-M. Gonzalez, M. Sochor, and P. McLean. The effect of an aldose reductase inhibitor (sorbinil) on the level of metabolites in lenses of diabetic rats. Diabetes 32:482–485 (1983).

    Google Scholar 

  6. A. Beyer-Mears and E. Cruz. Reversal of diabetic cataract by sorbinil, an aldose reductase inhibitor. Diabetes 34:15–21 (1985).

    Google Scholar 

  7. D. R. Tomlinson, R. J. Moriarty, and J. H. Mayer. Prevention and reversal of defective axonal transport and motor nerve conduction velocity in rats with experimental diabetes by treatment with the aldose reductase inhibitor sorbinil. Diabetes 33:470–476 (1984).

    Google Scholar 

  8. J. H. Mayer and D. R. Tomlinson. Prevention of defects of axonal transport and nerve conduction velocity by oral administration of myo-inositol or an aldose reductase inhibitor in streptozotocin-diabetic rats. Diabetologia 25:433–438 (1983).

    Google Scholar 

  9. D. Stribling, D. J. Mirrlees, H. E. Harrison, and D. C. N. Earl. Properties of ICI 128,436, a novel aldose reductase inhibitor, and its effects on diabetic complications in the rat. Metabolism 4:336–344 (1985).

    Google Scholar 

  10. G. B. Willars, J. Townsend, D. R. Tomlinson, A. M. Compton, and R. D. Churchill. Studies on peripheral nerve and lens in long-term experimental diabetes: Effects of the aldose reductase inhibitor statil. Metabolism 37:442–449 (1988).

    Google Scholar 

  11. W. G. Robison, Jr., P. F. Kador, and J. H. Kinoshita. Retinal capillaries: Basement membrane thickening by galactosemia prevented with aldose reductase inhibitor. Science 221:1177–1179 (1983).

    CAS  PubMed  Google Scholar 

  12. R. N. Frank, R. J. Keirn, A. Kennedy, and K. W. Frank. Galactose-induced retinal capillary basement membrane thickening: Prevention by sorbinil. Ophthalmol. Vis. Sci. 24:1519–1524 (1983).

    Google Scholar 

  13. W. G. Robison, Jr., P. F. Kador, Y. Akagi, J. H. Kinoshita, R. Gonzalez, and D. Dvornik. Prevention of basement membrane thickening in retinal capillaries by a novel inhibitor of aldose reductase, tolrestat. Diabetes 35:295–299 (1986).

    Google Scholar 

  14. J. R. Williamson, K. Chang, E. Rowold, J. Marvel, M. Tomlinson, W. R. Sherman, K. E. Ackermann, and C. Kilo. Sorbinil prevents diabetes-induced increases in vascular permeability but does not alter collagen cross-linking. Diabetes 34:703–705 (1985).

    Google Scholar 

  15. M. L. McCaleb, J. Sredy, J. Millen, D. M. Ackerman, and D. Dvornik. Prevention of urinary albumin excretion in 6 month streptozocin-diabetic rats with the aldose reductase inhibitor tolrestat. J. Diabet. Complicat. 2:16–18 (1988).

    Google Scholar 

  16. J. I. Malone, H. Leavengood, M. J. Peterson, M. M. O'Brien, M. G. Page, and C. E. Aldinger. Red blood cell sorbitol as an indicator of polyol pathway activity. Inhibition by sorbinil in insulin-dependent diabetic subjects. Diabetes 33:45–49 (1984).

    Google Scholar 

  17. P. E. Raskin, J. Rosenstock, P. Challis, S. Ryder, F. F. Mullane, R. Gonzalez, D. Hicks, T. Smith, and D. Dvornik. Effect of tolrestat on red blood cell sorbitol levels in patients with diabetes. Clin. Pharmacol. Ther. 38:625–630 (1985).

    Google Scholar 

  18. R. G. Judzewitsch, J. B. Jaspan, K. S. Polonsky, C. R. Weinberg, J. B. Halter, E. Halar, M. A. Pfeifer, C. Vukadinovic, L. Bernstein, M. Schneider, K.-Y. Liang, K. H. Gabbay, A. H. Rubenstein, and D. Porte. Aldose reductase inhibition improves nerve conduction velocity in diabetic patients. N. Engl. J. Med. 308:119–125 (1983).

    Google Scholar 

  19. A. A. F. Sima, V. Bril, V. Nathaniel, T. A. J. McEwen, M. B. Brown, S. A. Lattimer, and D. A. Greene. Regeneration and repair of myelinated fibers in sural-nerve biopsy specimens from patients with diabetic neuropathy treated with sorbinil. N. Engl. J. Med. 319:548–555 (1988).

    Google Scholar 

  20. P. J. Dyck, B. R. Zimmerman, T. H. Vilen, S. R. Minnerath, J. L. Karnes, J. K. Yao, and J. F. Poduslo. Nerve glucose, fructose, sorbitol, myoinositol, and fiber degeneration and regeneration in diabetic neuropathy. N. Engl. J. Med. 319:542–548 (1988).

    Google Scholar 

  21. B. L. Mylari, E. R. Larson, T. A. Beyer, W. J. Zembrowski, C. E. Aldinger, M. F. Dee, T. W. Siegel, and D. H. Singleton. Novel, potent aldose reductase inhibitors: 3,4-Dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl]-methyl]-1-phthalazine-acetic acid (zopolrestat) and congeners. J. Med. Chem. 34:108–122 (1991).

    Google Scholar 

  22. T. A. Beyer, T. W. Siegel, D. A. Beebe, C. E. Aldinger, C. A. Ellery, M. A. Ashton, L. Pustilnik, and L. A. Morehouse. Low doses of aldose reductase inhibitors dissociate sorbitol accumulation from myoinositol depletion in tissues of the diabetic rat. Diabetes 39:S1, 187A (1990).

    Google Scholar 

  23. P. J. Oates and C. A. Ellery. Aldose reductase inhibitors sorbinil and CP-73,850 prevent galactose-induced hyperperfusion of the renal cortex. Diabetes 39:S1, 184A (1990).

    Google Scholar 

  24. S. Tsuchiya, T. Sakurai, and S.-I. Sekiguchi. Nonenzymatic glucosylation of human serum albumin and its influence on binding capacity of sulfonylureas. Biochem. Pharmacol. 33:2967–2971 (1984).

    Google Scholar 

  25. F. Ruiz-Cabello and S. Erill. Abnormal serum protein binding of acidic drugs in diabetes mellitus. Clin. Pharmacol. Ther. 36:691–695 (1984).

    Google Scholar 

  26. G. Gatti, F. Crema, G. Attardo-Parrinello, P. Fration, F. Aguzzi, and E. Perucca. Serum protein binding of phenytoin and valproic acid in insulin-dependent diabetes mellitus. Ther. Drug Monitor. 9:389–391 (1987).

    Google Scholar 

  27. J. R. Williamson and C. Kilo. Current status of capillary basement-membrane disease in diabetes mellitus. Diabetes 26:65–75 (1977).

    Google Scholar 

  28. D. H. Rohrbach and G. R. Martin. Structure of basement membrane in normal and diabetic tissue. Ann. N.Y. Acad. Sci. 401:203–211 (1983).

    Google Scholar 

  29. P. B. Inskeep, R. A. Ronfeld, K. D. Wilner, and F. G. McMahon. Pharmacokinetics of zopolrestat in non-insulin dependent diabetics (submitted for publication).

  30. G. J. Mulder, F. C. J. Wierckx, P. L. M. Jansen, and A. Warrander. Acyl-glucuronidation of ponalrestat in the rat in vivo and its role in the sex difference in urinary excretion of the drug. In G. Siest, J. Magdalou, and B. Burchell (eds.), Cellular and Molecular Aspects of Glucuronidation, Colloque INSERM/John Libbey Eurotext Ltd., London, 1988, Vol. 173, pp. 271–278.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inskeep, P.B., Reed, A.E. & Ronfeld, R.A. Pharmacokinetics of Zopolrestat, a Carboxylic Acid Aldose Reductase Inhibitor, in Normal and Diabetic Rats. Pharm Res 8, 1511–1515 (1991). https://doi.org/10.1023/A:1015894300247

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015894300247

Navigation