Skip to main content
Log in

Degradation of Insulin by Trypsin and Alpha-Chymotrypsin

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The rate and extent of insulin degradation by trypsin and α-chymotrypsin were examined in vitro, and the initial sites of cleavage by α-chymotrypsin were identified. The apparent K m for both enzymes was approximately the same but the apparent V max for α-chymotrypsin was 8.6 times greater. At a molar ratio of 172:1 (insulhr.enzyme), chymotrypsin caused near-total loss of insulin within 40 min, while very little insulin was degraded by trypsin. Chymotrypsin appeared to cleave initially at the carboxyl side of the B26-Tyr and A19-Tyr residues, and additional cleavage at the B16-Tyr, B25-Phe, and A14-Tyr residue sites also occurred rapidly. Only two to three other susceptible bonds, which are not exposed at the surface of the insulin molecule, remained intact after the quenching of initial cleavage. Four of the amino acids involved in initial cleavage are essential for receptor binding ability, making it difficult to modify insulin chemically to achieve greater stability without losing activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Sanger and H. Tuppy. The amino acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymichydrolysates. Biochem. J. 49:481–490 (1951).

    Google Scholar 

  2. D. M. P. Phillips. Further observations on the action of chymotrypsin on insulin. Biochem. J. 49:506–512 (1951).

    Google Scholar 

  3. F. Sanger and E. O. P. Thompson. The amino acid sequence in the glycyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochem. J. 53:366–374 (1953).

    Google Scholar 

  4. A. Ginsburg and H. K. Schachman. Studies on the enzymatic breakdown of proteins. I. Action of chymotrypsin on insulin. J. Biol. Chem. 235:108–114 (1960).

    Google Scholar 

  5. J. D. Young and F. H. Carpenter. Isolation and characterization of products formed by the action of trypsin on insulin. J. Biol. Chem. 236:743–748 (1961).

    Google Scholar 

  6. W. W. Bromer and R. E. Chance. Preparation and characterization of desoctapeptide-insulin. Biochim. Biophys. Acta 133:219–223 (1967).

    Google Scholar 

  7. R. J. Schilling and A. K. Mitra. Intestinal mucosal transport of insulin. Int. J. Pharm. 62:53–64 (1990).

    Google Scholar 

  8. M. Laskowski, Jr. Effect of trypsin inhibitor on passage of insulin across the intestinal barrier. Science 127:1115–1116 (1958).

    Google Scholar 

  9. E. Danforth, Jr., and R. O. Moore. Intestinal absorption of insulin in the rat. Endocrinology 65:118–123 (1959).

    Google Scholar 

  10. M. Kidron, H. Bar-On, E. M. Berry, and E. Ziv. The absorption of insulin from various regions of the rat intestine. Life Sci. 31:2837–2841 (1982).

    Google Scholar 

  11. S. Fujii, T. Yokohama, K. Ikegaya, F. Sato, and N. Yokoo. Promoting effect of the new chymotrypsin inhibitor FK-448 on the intestinal absorption of insulin in rats and dogs. J. Pharm. Pharmacol. 37:545–549 (1985).

    Google Scholar 

  12. M. Shinomiya, K. Shirai, Y. Saito, S. Yoshida, and N. Matsuoka. Effect of new chymotrypsin inhibitor (FK-448) on intestinal absorption of insulin. Lancet 2:1092–1093 (1985).

    Google Scholar 

  13. E. Ziv, O. Lior, and M. Kidron. Absorption of protein via the intestinal wall. Biochem. Pharmacol. 36:1035–1039 (1987).

    Google Scholar 

  14. C. W. Crane and G. R. W. N. Luntz. Absorption of insulin from the human small intestine. Diabetes 17:625–627 (1968).

    Google Scholar 

  15. M. J. Balsam, P. G. Holtzapple, R. Kaye, and E. M. Sewell. Intestinal absorption of insulin in patients with fibrocystic disease. J. Pediat. 79:1011–1014 (1971).

    Google Scholar 

  16. Drug Facts and Comparisons, J.B. Lippincott, St. Louis, MO, 1990, p. 130a.

  17. T. L. Blundell, J. F. Cutfield, S. M. Cutfield, E. J. Dodson, G. G. Dodson, D. C. Hodgkin, and D. A. Mercola. Three-Dimensional structure of insulin and its relationship to activity. Diabetes 21(Suppl. 2):492–505 (1972).

    Google Scholar 

  18. Y. Sun and D. L. Smith. Identification of disulfide-containing peptides by performic acid oxidation and mass spectrometry. Anal. Biochem. 172:130–138 (1988).

    Google Scholar 

  19. R. A. Pullen, D. G. Lindsay, S. P. Wood, I. J. Tickle, T. L. Blundell, A. Wormer, G. Krail, D. Brandenburg, H. Zahn, J. Gliemann, and S. Gammeltoft. Receptor-binding region of insulin. Nature 259:369–373 (1976).

    Google Scholar 

  20. M. Kobayashi, S. Ohgaku, M. Iwasaki, H. Maegawa, Y. Shigeta, and K. Inouye. Characterization of [LeuB-24]-and [LeuB-25]-insulin analogues, receptor binding and biological activity. Biochem. J. 206:597–603 (1982).

    Google Scholar 

  21. M. Kobayashi, S. Ohgaku, M. Iwasaki, H. Maegawa, Y. Shigeta, and K. Inouye. Supranormal insulin:[D-PheB24]-insulin with increased affinity for insulin receptors. Biochim. Biophys. Res. Comm. 107:329–336 (1982).

    Google Scholar 

  22. M. Kobayashi, M. Haneda, H. Maegawa, N. Watanabe, Y. Takada, Y. Shigeta, and K. Inouye. Receptor binding and biological activity of [SerB24]-insulin, and abnormal mutant insulin. Biochim. Biophys. Res. Comm. 119:49–57 (1984).

    Google Scholar 

  23. F. B. Stentz, R. K. Wright, and A. E. Kitabchi. A rapid means of separating A-14-I125-insulin from heterogeneously labeled insulin molecules for biologic studies. Diabetes 31:1128–1131 (1982).

    Google Scholar 

  24. T. L. Blundell, G. Dodson, D. Hodgkin, and D. Mercola. Insulin: The structure in the crystal and its reflection in chemistry and biology. In C. B. Anfinsen, Jr., J. T. Edsall, and F. M. Richards (eds.), Adv. Prot. Chem. 26:279–403 (1972).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schilling, R.J., Mitra, A.K. Degradation of Insulin by Trypsin and Alpha-Chymotrypsin. Pharm Res 8, 721–727 (1991). https://doi.org/10.1023/A:1015893832222

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015893832222

Navigation