Skip to main content
Log in

Mechanism of Acyclovir Uptake in Rat Jejunum

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The intestinal uptake mechanism of the purine analogue, acyclovir, was investigated in rat jejunum using in vitro and in situ methods. The pyrimidine, uracil, was used as a reference compound for carrier-mediated transport, while the purine analogue, caffeine, served as the reference compound for passive diffusion. With the in vitro intestinal ring method, acyclovir uptake was linear in the concentration range 0.01–5 mM. No significant competition for uptake was observed with uracil, 6-mercaptopurine, hypoxanthine, caffeine, or adenine. In addition, use of 2,4-dinitrophenol (DNP), ouabain, or K+ substituted buffer did not reduce the rate of acyclovir uptake. The in situ single-pass perfusion method yielded a wall permeability of ∼0.2, which did not vary consistently with increasing concentration. Coperfusion of acyclovir with DNP did not decrease the wall permeability. None of the data provided evidence of a carrier-mediated transport system, and it was concluded that the uptake mechanism of acyclovir in the rat jejunum is predominantly via passive diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. G. Gilman, L. S. Goodman, T. W. Rall, and F. Murad (eds.). The Pharmacological Basis of Therapeutics, MacMillan, New York, 1986, pp. 1229–1231.

    Google Scholar 

  2. W. H. Miller and R. L. Miller. J. Biol. Chem. 255(15):7204–7207 (1980).

    Google Scholar 

  3. P. de Miranda and M. R. Blum. J. Ant. Chemo. 12(B):29–37 (1983).

    Google Scholar 

  4. P. de Miranda, H. C. Krasny, D. A. Page, and G. B. Elion. Am. J. Med. Acyclovir Symp. 31–55 (1982).

  5. L. S. Schanker and D. J. Tocco. J. Pharm. Exp. Ther. 128:115–120 (1960).

    Google Scholar 

  6. L. S. Schanker and D. J. Tocco. Biochim. Biophys. Acta. 56:469–473 (1962).

    Google Scholar 

  7. J. R. Bronk and J. G. Hastewell. J. Phys. 382:475–488 (1986).

    Google Scholar 

  8. M. I. Shaw and D. S. Parsons. Clin. Sci. 66:1–212 (1960)

    Google Scholar 

  9. V. S. Patel and W. G. Kramer. J. Pharm. Sci. 75(3):275–277 (1986).

    Google Scholar 

  10. R. D. Berlin and R. A. Hawkins. Am. J. Phys. 215(4):932–941 (1968).

    Google Scholar 

  11. J. Blanchard, D. F. Perry, and P. D. Watson. Int. J. Pharm. 18:259–268 (1984).

    Google Scholar 

  12. D. W. Wilson and H. C. Wilson. J. Biol. Chem. 237(5):1643–1647 (1962).

    Google Scholar 

  13. J. H. Oh, J. B. Dosseter, and I. T. Beck. Can J. Phys. Pharm. 45:121–127 (1967).

    Google Scholar 

  14. C. E. Dukes, C. A. Steplock, A. M. Kahn, and E. J. Weinman. Proc. Soc. Exp. Biol. Med. 171:19–23 (1982).

    Google Scholar 

  15. J. Knapowski, W. Adam, C. Arasinowicz, and K. Weiss. Acta. Med. Polona 4:201–207 (1963).

    Google Scholar 

  16. N. Kolassa, W. G. Schutzenberger, H. Weiner, and K. Turnheim. Am. J. Phys. 238:G141–G149 (1980).

    Google Scholar 

  17. E. Scharrer, W. Raab, W. Tiemeyer, and B. Amann. Pflugers Arch. 391:41–43 (1981).

    Google Scholar 

  18. A. H. Khan, S. Wilson, and J. C. Crawhall. Can. J. Phys. Pharm. 53:113–119 (1975).

    Google Scholar 

  19. A. Sasaki, J. Nakamura, R. Konishi, and J. Shibasaki. Chem. Pharm. Bull. 34(10):4265–4272 (1986).

    Google Scholar 

  20. W. R. Ravis, J. W. Wang, and S. Feldman. Biochem. Pharmacol. 33:443–448 (1984).

    Google Scholar 

  21. D. Brigden, A. Fowle, and A. Rosling. In L. H. Collier and J. Oxford (eds.), Developments in Antiviral Therapy, Academic Press, London, 1980, pp. 53–62.

    Google Scholar 

  22. G. L. Amidon, B. H. Stewart, and S. Pogany. J. Cont. Release 2:13–26 (1985).

    Google Scholar 

  23. R. L. Elliott, G. L. Amidon, and E. N. Lightfoot. J. Theor. Biol. 87:757–771 (1980).

    Google Scholar 

  24. P. de Miranda, H. C. Krasny, D. A. Page, and G. B. Elion. J. Pharm. Exp. Ther. 219(2):309–315 (1981).

    Google Scholar 

  25. R. L. Pisoni, K. S. Flickinger, J. G. Thoene, and H. N. Christensen. J. Biol. Chem. 262(13):6010–6017 (1987).

    Google Scholar 

  26. B.W. Katgely, R. J. Bridges, and W. Rummel. Biochim. Biophys. Acta 832:429–434 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meadows, K.C., Dressman, J.B. Mechanism of Acyclovir Uptake in Rat Jejunum. Pharm Res 7, 299–303 (1990). https://doi.org/10.1023/A:1015890516119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015890516119

Navigation