Pharmaceutical Research

, Volume 7, Issue 2, pp 184–187 | Cite as

Quantitation of the Relative Amounts of Anhydrous Carbamazepine (C15H12N2O) and Carbamazepine Dihydrate (C15H12N2O · 2H2O) in a Mixture by Solid-State Nuclear Magnetic Resonance (NMR)

  • Raj Suryanarayanan
  • Timothy S. Wiedmann
Article

Abstract

The application of solid state nuclear magnetic resonance (NMR) for the quantitation of the relative amounts of carbamazepine anhydrate (I) and Carbamazepine dihydrate (II) in a mixture is presented. The techniques of cross polarization, dipolar decoupling, and magic angle spinning have been used to obtain high-resolution NMR spectra of the samples in the solid state. Although the chemical shifts of I and II were similar, the proton spin lattice relaxation time of II was much shorter than that of I. A delay time of 10 sec between pulses resulted in saturation of the signal from I and in a spectrum arising solely from II. The dependence of the observed signal intensity on the contact time was evaluated for II and glycine, the internal standard, to allow theoretical estimation of the peak area ratios. Various molar ratios of I and II were then mixed with glycine, and the resulting peak area ratios of II to the area of the alpha and the carbonyl carbons of glycine was linearly related to the relative proportion of II in the mixture.

anhydrous carbamazepine carbamazepine dihydrate solid-state nuclear magnetic resonance (NMR) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. W. M. Jongmans. Epilepsia 5:74–82 (1964).Google Scholar
  2. 2.
    S. Blom. Lancet 1:839–840 (1962).Google Scholar
  3. 3.
    E. A. Swinyard. In A. R. Gennaro (ed.), Remington's Pharmaceutical Sciences, Mack, Easton, PA, p. 1077.Google Scholar
  4. 4.
    G. J. Burckart, R. W. Hammond, and M. J. Akers. Am. J. Hosp. Pharm. 38:1929–1931 (1981).Google Scholar
  5. 5.
    The United States Pharmacopeia, 21st rev., United States Pharmacopeial Convention, Rockville, MD, 1985, p. 1446.Google Scholar
  6. 6.
    P. Kahela, R. Aaltonen, E. Lewing, M. Anttila, and E. Kristoffersson. Int. J. Pharm. 14:103–112 (1983).Google Scholar
  7. 7.
    E. Laine, V. Tuominen, P. Ilvessalo, and P. Kahela. Int. J. Pharm. 20:307–314 (1984).Google Scholar
  8. 8.
    E. Shefter and T. Higuchi. J. Pharm. Sci. 52:781–791 (1963).Google Scholar
  9. 9.
    S. Niazi. J. Pharm. Sci. 67:488–491 (1978).Google Scholar
  10. 10.
    J. K. Haleblian. J. Pharm. Sci. 64:1269–1288 (1975).Google Scholar
  11. 11.
    N. Kaneniwa, Yamaguchi, N. Watari, and M. Otsuka. Yakugaku Zasshi 104:184–190 (1984).Google Scholar
  12. 12.
    W. J. Bloedel and V. W. Meloche. Elementary Quantitative Analysis, 2nd ed., Harper and Row, New York, 1963, pp. 150–156.Google Scholar
  13. 13.
    R. Suryanarayanan. Pharm. Res. 6:1017–1024 (1989).Google Scholar
  14. 14.
    R. H. Atalla, J. C. Gast, D. W. Sindorf, V. J. Bartuska, and G. E. Maciel. J. Am. Chem. Soc. 102:3249–3251 (1980).Google Scholar
  15. 15.
    S. R. Byrn, G. Gray, R. R. Pfeiffer, and J. Frye. J. Pharm. Sci. 74:565–568 (1985).Google Scholar
  16. 16.
    C. S. Yannoni. Acc. Chem. Res. 15:201–208 (1982).Google Scholar
  17. 17.
    D. Weiner and K. Metzler. PCNONLIN, Statistical Consultants Inc., Edgewood, KY, 1986.Google Scholar
  18. 18.
    R. Griffin. Meth. Enzymol. 72:108–173 (1981).Google Scholar
  19. 19.
    M. Mehring. Principles of High Resolution NMR in Solids, Springer-Verlag, New York, 1983, pp. 143–168.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Raj Suryanarayanan
    • 1
  • Timothy S. Wiedmann
    • 1
  1. 1.Department of Pharmaceutics, College of PharmacyUniversity of MinnesotaMinneapolis

Personalised recommendations