Skip to main content
Log in

Species richness and ecophysiological types among Bolivian bromeliad communities

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

The relationship between diversity and composition of neotropicalbromeliad communities and abiotic and autecological factors is still poorlyunderstood. In this study, I related point diversity (mean species number per400 m2 plot), α diversity (total species number persite), representation of life-forms (epiphytes, terrestrials, saxicoles), andsix ecophysiological types of bromeliads at 74 forest sites in the BolivianAndes and adjacent lowlands to 12 environmental factors reflecting mostlyclimatic conditions. A total of 192 species, including 108 epiphytes, 106saxicoles, and 49 terrestrials, were recorded. Extrapolation revealed that theactual total species number in the region is at least 24% higher than recorded,especially among terrestrial (71%) and saxicolous (40%) species. Epiphytes weremore fully sampled because of their tendency towards larger range size andbecause they are distributed more evenly where they occur. Overall, theenvironmental factors explained up to 61% of the observed variance, reflectingall expected relationships such as the increase of tank bromeliads in wethabitats and of atmospheric bromeliads in arid regions. Point diversity almostalways showed higher regression coefficients than α diversity, possibly as aresult of more complete sampling in small plots and because the abundance ofindividual species (which influences point diversity) may be more closelyrelated to abiotic factors than species richness. Despite somewhat lowerα diversity in arid areas, point diversity peaked in dry habitats,presumably due to the scarcity of competing epiphytic orchids, ferns, and aroidsthat lack the extreme adaptation of bromeliads to drought stress and lownutrient availability. The decline of epiphytic bromeliad diversity at highelevations appears to be linked to low temperatures, particularly increasingfrost frequency. It is hypothesized that the low diversity of bromeliads inhumid tropical lowland forests is caused by low photosynthetic rates due to highwater stress and low light availability combined with high respiration losses.In combination, these factors would impede the maintenance of a positive carbonbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrade J.L. and Nobel P.S. 1997. Microhabitats and water relations of epiphytic cacti and ferns in a lowland Neotropical forest. Biotropica 29: 261-270.

    Google Scholar 

  • Balslev H., Valencia R., Paz y Miño G., Christensen H. and Nielsen I. 1999. Species count of vasular plants in one hectare of humid lowland forest in Amazonian Ecuador. In: Dallmeier F. and Comiskey J.A. (eds), Forest Biodiversity in North, Central and South America and the Caribbean. Research and Monitoring. UNESCO, Paris and Parthenon Publishing Group, New York. Man and the Biosphere series 21, pp. 585-594.

    Google Scholar 

  • Benzing D.H. 1990. Vascular Epiphytes. Cambridge University Press, New York.

    Google Scholar 

  • Benzing D.H. 2000. Bromeliaceae. Profile of an Adaptive Radiation. Cambridge University Press, Cambridge.

    Google Scholar 

  • Chao A. 1987. Estimating the population size for capture-recapture date with unequal catchability. Biometrics 43: 783-791.

    Google Scholar 

  • Cowell R.K. and Coddington J.A. 1995. Estimating terrestrial biodiversity through extrapolation. In: Hawksworth D.L. (ed.), Biodiversity. Measurement and Estimation. Chapman and Hall, London, pp. 101-118.

    Google Scholar 

  • Ellenberg H. 1981. Ursachen desVorkommens und Fehlens von Sukkulenten in den Trockengebieten der Erde. Flora171: 114-169.

    Google Scholar 

  • Eriksen W. 1986. Frostwechsel und hygrische Bedingungen in der Puna Boliviens. Ein Beitrag zur Ökoklimatologie der randtropischen Anden Bolivien. In: Buchholz H.J. (ed.), Beiträge zur physischen Geographie eines Andenstaates. Jahrbuch Geographischen Gesellschaft Hannover 1985, Hannover, pp. 1-21.

  • Fischer E.A. and Araujo A.C. 1996. The bromeliad flora of the Rio Verde estuary (Juréia, São Paulo): a comparison with other neotropical communities. Bromelia 3: 19-25.

    Google Scholar 

  • Fjeldså J., Lambin E. and Mertens B. 1999. Correlation between endemism and local ecoclimatic stability documented by comparing Andean bird distributions and remotely sensed land surface data. Ecography 22: 63-78.

    Google Scholar 

  • Fontoura T. 1995. Distribution patterns of five Bromeliaceae genera in Atlantic rainforest, Rio de Janeiro State, Brazil. Selbyana16: 79-93.

    Google Scholar 

  • Fredericksen T.S., McDonald E., Wright K. and Mostacedo B. 1999. Ecología de la bromeliácea terrestre Pseudananas sagenarius (Bromeliaceae, Bromelioideae) en bosques secos de Bolivia. Rev. Soc. Boliviana Bot. 2: 165-173.

    Google Scholar 

  • Gentry A.H. and Dodson C.H. 1987. Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Gardens 74: 205-233.

    Google Scholar 

  • Haffer J. 1987. Quaternary history of tropical America. In: Whitmore T.C. and Prance G.T. (eds), Biogeography and Quaternary History in Tropical America. Oxford University Press, Oxford, pp. 1-18.

    Google Scholar 

  • Hietz P. and Hietz-Seifert U. 1995. Composition and ecology of vascular epiphyte communities along an elevational gradient in central Veracruz, Mexico. Journal of Vegetation Science 6: 487-498.

    Google Scholar 

  • Ibisch P.L. 1996. Neotropische Epiphytendiversitat-das Beispiel Bolivien. Archiv naturwissenschaftlicher Dissertationen 1 Martina Galunder-Verlag, Wiehl, Germany.

    Google Scholar 

  • Ibisch P.L. 1998. Bolivia is a megadiversity country and a developing country. In: Barthlott W. and Winiger M. (eds), Biodiversity. A Challenge for Development Research and Policy. Springer, Berlin, pp.213-242.

  • Ibisch P.L., Boegner A., Nieder J. and Barthlott W. 1996a. How diverse are neotropical epiphytes ? An analysis based on the “Catalogue of the flowering plants and gymnosperms of Peru”. Ecotropica 1: 13-28.

    Google Scholar 

  • Ibisch P.L., Rojas P., de la Barra N., Fernández E., Mercado M., Ovando L. et al. 1996b. Un “lugar deencuentro”: Flora de la zona arqueológica “El Fuerte”, Samaipata (Prov. Florida, Dpto. Santa Cruz, Bolivia). Ecología en Bolivia 28: 1-28.

    Google Scholar 

  • Ibisch P.L. and Vasquez R. 2000. Illustrated Catalogue of the Bromeliaceae of Bolivia. FAN, Santa Cruz, Bolivia, CD-Rom.

    Google Scholar 

  • Ibisch P.L., Vásquez R. and Gross E. 1999. New species of Puya and Pitcairnia (Bromeliaceae) from the Amboró National Park and vicinities (Santa Cruz, Bolivia): a neglected center of diversity and endemism of Pitcairnioideae. Journal of the Bromeliad Society 49: 124-135.

    Google Scholar 

  • Johansson D.R. 1974. Ecology of vascular epiphytes in west African rain forests. Acta Phytogeographica Suecica 59: 1-136.

    Google Scholar 

  • Jordan E. 1991. Die Gletscher der bolivianischen Anden. Franz Steiner Verlag, Stuttgart.

    Google Scholar 

  • Kessler M. 2001. Pteridophyte species richness in Andean forests in Bolivia. Biodiversity and Conservation 10: 1473-1495.

    Google Scholar 

  • Kessler M. and KrÖmer T. 2000. Patterns and ecological correlates of pollination modes among bromeliad communities of Andean forests in Bolivia. Plant Biology 2: 659-669.

    Google Scholar 

  • Killeen T.J., Jardim A., Mamami F., Rojas N. and Saravia P. 1998. Diversity, composition, and structure of a tropical deciduous forest in the Chiquitanía region of Santa Cruz, Bolivia. Journal of Tropical Ecology 14: 803-827.

    Google Scholar 

  • KrÖmer T., Kessler M., Holst B.K., Luther H.E., Gouda E., Till W. et al. 1999. Checklist of Bolivian Bromeliaceae with notes on species distribution and levels of endemism. Selbyna 20: 201-223.

    Google Scholar 

  • Lieth H. 1975. Modeling the primary productivity of the world. In: Lieth H. and Whittaker R.H. (eds), Primary Productivity of the Biosphere. Springer-Verlag, New York, pp. 237-263.

    Google Scholar 

  • Pareja J., Vargas C., Suárez R., Ballón R., Carrasco R. and Villarroel C. 1978. Mapa geológico de Bolivia. YPFB-Servicio Geológico de Bolivia, La Paz.

    Google Scholar 

  • Parker T.A., Gentry A.H., Foster R.B., Emmons L.H. and Remsen J.V. Jr. 1993. The lowland dry forests of Santa Cruz, Bolivia: a global conservation priority. Conservation International, Washington, DC, RAP Working Papers.

    Google Scholar 

  • Pittendrigh C.S. 1948. The bromeliad-Anopheles-malaria complex in Trinidad. I. The bromeliad flora. Evolution 2: 58-89.

    Google Scholar 

  • Prendergast J.R., Quinn R.M., Lawton J.H., Eversham B.C. and Gibbons D.W. 1993. Rare species: the coincidence of diversity hotspots and conservation strategies. Nature 365: 335-337.

    Google Scholar 

  • Rahbek C. 1997. The relationship among area, elevation, and regional species richness in neotropical birds. American Naturalist 149: 875-902.

    Google Scholar 

  • Ricklefs R.E. and Schluter D. 1993. Species Diversity in Ecological Communities. Historical and Geographical Perspectives. University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Rosenzweig M.L. 1995. Species Diversity in Space and Time. Cambridge University Press, New York.

    Google Scholar 

  • Saldias P.M. 1991. Inventario de árboles en el bosque alto del Jardín Botánico de Santa Cruz, Bolivia. Ecología en Bolivia 17: 31-46.

    Google Scholar 

  • Schimper A.F.W. 1888. Die epiphytische Vegetation Amerikas. G. Fischer, Jena, Bot. Mitt. Tropen II.

    Google Scholar 

  • Secink J. 1984. An altitudinal sequence of soils in the Sierra Nevada de Santa Marta. Studies on Tropical Andean Ecosystems 2: 131-138.

    Google Scholar 

  • Smith L.B. 1934. Geographical evidence on the lines of evolution in the Bromeliaceae. Bot. Jahrb. Syst. 66: 446-485.

    Google Scholar 

  • Smith L.B. and Downs R.J. 1977. Bromeliaceae. Part 2. Tillandsioideae Flora Neotropica Monograph 14. The New York Botanical Garden, Bronx, New York.

    Google Scholar 

  • Sugden A.M. 1981. Aspects of the ecology of vascular epiphytes in two Colombian cloud forests: II. Habitat preferences of Bromeliaceae in the Serrania de Macuria. Selbyana 5: 264-273.

    Google Scholar 

  • SYSTAT 1997. SYSTAT for Windows, statistics, version 7.0. SPSS Inc., Chicago, Illinois.

    Google Scholar 

  • ter Steege H. and Cornelissen J.H.C. 1989. Distribution ecology of vascular epiphytes in lowland rainforest of Guyana. Biotropica 21: 331-339.

    Google Scholar 

  • Terborgh J. 1977. Bird species diversity on an Andean elevational gradient. Journal of Ecology 58: 1007-1019.

    Google Scholar 

  • Vásquez R. 1994. Un viaje de observación botánica a la región de Ivitiapi (Provincia Cordillera, Departamento de Santa Cruz). Rev. Soc. Estudios Botánicos 1: 61-69.

    Google Scholar 

  • Walther B.A. and Morand S. 1998. Comparative performance of species richness estimation methods. Parasitology 116: 395-405.

    Google Scholar 

  • Whittaker R.H. 1972. Evolution and measurement of species diversity. Taxon 21: 213-251.

    Google Scholar 

  • Wolf J.H.D. 1993. Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Annals of the Missouri Botanical Gardens 80: 928-960.

    Google Scholar 

  • Zotz G. 1997. Substrate use by three bromeliads. Ecography 20: 264-270.

    Google Scholar 

  • Zotz G. and Andrade J.L. 1997. Water relations of two co-occurring epiphytic bromeliads. Journal of Plant Physiology 152: 545-554.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, M. Species richness and ecophysiological types among Bolivian bromeliad communities. Biodiversity and Conservation 11, 987–1010 (2002). https://doi.org/10.1023/A:1015875807613

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015875807613

Navigation