Skip to main content
Log in

Carboxylic Ester Hydrolase Activity in Hairless and Athymic Nude Mouse Skin

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The carboxylic ester hydrolase activity was compared in athymic nude mouse skin and hairless mouse skin with respect to hydrolytic ability, heat inactivation, pH optima, and substrate specificity. Five aliphatic 5′-esters of 5-iodo-2′-deoxyuridine (IDU) were incubated with skin homogenate preparations, and the effect of linear chain length and branching of the ester substituent on hydrolysis rate was evaluated. The ester hydrolase activity was three times higher in athymic mouse skin relative to hairless variety. In both mice skin preparations maximum hydrolysis rates were obtained with the valeryl ester followed by butryl, isobutyryl, propionyl and pivaloyl derivatives. Kinetic studies, however, revealed that higher ester hydrolase activity (V max) in athymic mouse skin is also associated with higher K m values, while the carboxylic ester hydrolases from these two different strains of mice have similar biochemical properties with respect to heat inactivation and pH optima. Athymic mouse skin resembled hairless mice skin in terms of cholinesterase content. A significant fraction (70–80%) of ester hydrolyzing activities in both strains of mice skin resulted from cholinesterases (true and/or pseudo). The remaining activity was attributed to different ester cleaving enzymes in the two strains of mice. Carbonic anhydrases and arylesterases contributed to the ester hydrolyzing activity of the athymic and normal hairless mice skins, respectively. Product inhibition by the regenerated hydrolytic product, free IDU, was also noticed which resulted in incomplete conversion of rapidly hydrolyzable 5′-esters such as the valeryl and butyryl derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Hopkins, L. Aarons, and M. Rowland. In M. A. Weber and C. J. Mathias (eds.), Current Controversies and New Approaches, Steinkoff Verlag, Darmstadt, 1984, pp. 143–147.

    Google Scholar 

  2. W. R. Good. Drug Dev. Ind. Pharm. 9:647–670 (1983).

    Google Scholar 

  3. J. E. Shaw and S. K. Chandrasekharan. Drug Met. Rev. 8:223–233 (1978).

    Google Scholar 

  4. J. Kao, J. Hall, and J. M. Holland. Toxicol Appl. Pharmacol. 68:206–217 (1983).

    Google Scholar 

  5. S. K. Chandrasekharan, W. Bayne, and J. E. Shaw. J. Pharm. Sci. 67:1370–1374 (1978).

    Google Scholar 

  6. M. S. Robert, R. A. Anderson, and J. Swarbrick. J. Pharm. Pharmacol. 29:677–683 (1977).

    Google Scholar 

  7. H. Mukhtar and D. R. Bickers. Drug Metab. Dispos. 11:562–576 (1983).

    Google Scholar 

  8. W. A. Khan, M. Das, S. Stick, S. Javed, D. R. Bickers, and H. Mukhtar. Biochem. Biophys. Res. Comm. 146:123–126 (1987).

    Google Scholar 

  9. Y. Ozawa, I. Koyama, S. Murayama, and T. Nadai. Chem. Pharm. Bull. 33:5113–5118 (1985).

    Google Scholar 

  10. W. Wiegrebe, A. Retzow, E. Plumier, N. Ersoy, A. Garbe, H. P. Faro, and R. Kurnet. Arzneim-Forsch. 34:48–51 (1984).

    Google Scholar 

  11. A. S. Hua, N. F. H. Ho, N. Husari, G. L. Flynn, W. E. Jetzer, and L. Condie. Arch. Environ. Contam. Toxicol. 15:557–566 (1986).

    Google Scholar 

  12. E. Touiton and L. Abed. Int. J. Pharm. 27:89–98 (1985).

    Google Scholar 

  13. A. S. Susten, B. L. Dame, and R. W. Niemeyer. J. Toxicol. 6:43–46 (1986).

    Google Scholar 

  14. B. T. Nghiem and T. Higuchi. Int. J. Pharm. 44:125–130 (1988).

    Google Scholar 

  15. N. D. Reed and D. D. Manning. Proc. Soc. Exp. Biol. Med. 143:350–355 (1973).

    Google Scholar 

  16. J. Ryguard. Acta Pathol. Microbiol. Scand. 82:105–111 (1974).

    Google Scholar 

  17. G. G. Krueger, D. D. Manning, J. Malout, and B. Ogden. J. Invest. Dermatol. 64:307–312 (1975).

    Google Scholar 

  18. J. W. Streilein. J. Invest. Dermatol. 71:167–171 (1978).

    Google Scholar 

  19. N. V. Sheth, M. B. McKeough, and S. L. Sprunace. J. Invest. Dermatol. 89:598–602 (1987).

    Google Scholar 

  20. M. M. Narurkar and A. K. Mitra. Pharm. Res. 5(11):734–739 (1988).

    Google Scholar 

  21. O. H. Lowry, N. J. Rosebrough, and A. L. Farr. J. Biol. Chem. 193:265–274 (1957).

    Google Scholar 

  22. M. Dixon and E. C. Webb. In P. D. Boyer (ed.), Enzymes, 3rd ed. Academic Press, New York, 1979, pp. 231–270.

    Google Scholar 

  23. B. H. J. Hofstee. J. Biol. Chem. 201:219–222 (1956).

    Google Scholar 

  24. V. H. L. Lee. J. Pharm. Sci. 72:239–244 (1983).

    Google Scholar 

  25. C. H. Walker and M. I. Mackness. Biochem. Pharmacol. 32:3265–3271 (1983).

    Google Scholar 

  26. T. Weinker and O. V. Deimling. Biochem. J. 246:559–563 (1987).

    Google Scholar 

  27. H. Krisch. In P. D. Boyer (ed.), Enzymes, 3rd ed., Academic Press, London and New York, 1971, Vol. 5, p. 43.

    Google Scholar 

  28. B. N. LaDu and H. Snedy. In B. B. Brodie and J. R. Gillette (eds.), Handbook of Experimental Pharmacology, Vol. 20, Pt. II, Springer-Verlag, New York, 1971, p. 477.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, M.K., Mitra, A.K. Carboxylic Ester Hydrolase Activity in Hairless and Athymic Nude Mouse Skin. Pharm Res 7, 251–255 (1990). https://doi.org/10.1023/A:1015869911576

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015869911576

Navigation