Skip to main content
Log in

Effect of Cyclodextrin Derivatives on Indomethacin Stability in Aqueous Solution

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The effect of various cyclodextrins (CD) and cyclodextrin derivatives on indomethacin stability in phosphate buffer, pH 7.4, was investigated. The influence of CD-ring size, type of substituent, degree of substitution, substitution pattern, and influence of CD concentration were monitored. The indomethacin complex in solution was studied by 1H-NMR spectroscopy to develop a molecular inclusion model. The most favorable ring size for the stabilization of indomethacin was the β-CD. The β-CD derivatives inhibited the hydrolysis of indomethacin more effectively than the parent CD. Among the studied CD derivatives, those with lipophilic substituents, such as ethyl or methyl, were superior to those with hydrophilic substitutents. The more hydroxyl groups of the glucose moiety are substituted, the better is the stabilizing effect. Further, the p-chlorobenzoic part of the indomethacin molecule is included in the CD channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Hartke and E. Mutschler. DAB 9 Kommentar, Wissenschaftl. Verlagsgesellschaft, Stuttgart, 1987, pp. 1974–1981.

    Google Scholar 

  2. M. O. Brian, J. McCauley, and E. Cohen. In K. Florey (ed.), Analytical Profiles of Drug Substances, Academic Press, Orlando, Fla., 1984, pp. 211–238.

    Google Scholar 

  3. S. Goto, W. Tseng, M. Kai, S. Aizawa, and S. Iguchi. Yakuzaigaku 29:42–49 (1969).

    Google Scholar 

  4. H. Krasowska. Acta Pharm. Jugoslav. 24:193–200 (1974).

    Google Scholar 

  5. J. E. Dawson, B. R. Hajratwala, and H. Taylor. J. Pharm. Sci. 66:1259–1263 (1977).

    Google Scholar 

  6. A.-H. Ghanem, H. El-Sabbagh, and H. Abdel-Alim. Pharmazie 34:406–407 (1979).

    Google Scholar 

  7. Y. Hamada, N. Nambu, and T. Nagai. Chem. Pharm. Bull. 23:1205–1211 (1975).

    Google Scholar 

  8. B. W. Müller and U. Brauns. Int. J. Pharm. 26:77–88 (1985).

    Google Scholar 

  9. W. Saenger. Angew. Chem. Int. Edn. Engl. 19:344–362 (1980).

    Google Scholar 

  10. J. Szejtli. Cyclodextrines and Their Inclusion Complexes, Akademiai Kiado, Budapest, 1982, pp. 204–232.

    Google Scholar 

  11. F. Hirayama, M. Kurihara, and K. Uekama. Chem. Pharm. Bull. 34:5093–5101 (1986).

    Google Scholar 

  12. B. W. Müller and U. Brauns. Pharm. Res. 2:309–310 (1985).

    Google Scholar 

  13. Y. Matsui, H. Naruse, K. Mochida, and Y. Date. Bull. Chem. Soc. Jap. 43:1909 (1970).

    Google Scholar 

  14. J. A. Hamilton and M. N. Sabesan. Carbohydr. Res. 102:31–42 (1982).

    Google Scholar 

  15. M. Wiese. FAMILY, unpublished program (1988).

  16. M. Wiese. CHEMPCCS, unpublished program (1988).

  17. M. L. Bender and M. Komiyama. Cyclodextrin Chemistry, Springer-Verlag, Berlin, 1978, pp. 33–64.

    Google Scholar 

  18. J. Pitha, K. Uekama, K. Fukunaga, A. Yoshida, T. Irie, and H. M. Fales. Pharm. Res. 5:713–717 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Backensfeld, T., Müller, B.W., Wiese, M. et al. Effect of Cyclodextrin Derivatives on Indomethacin Stability in Aqueous Solution. Pharm Res 7, 484–490 (1990). https://doi.org/10.1023/A:1015860531565

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015860531565

Navigation