Skip to main content
Log in

Reassessment of Species Invasions Concepts: The Great Lakes Basin as a Model

  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The Laurentian Great Lakes have an extensive history of species introductions, many of which occurred as a result of ballast water discharge by trans-oceanic ships. Most nonindigenous species (NIS) of animals and protozoans that established in the Great Lakes since 1985 are native to the Black, Azov and Caspian Seas or other regions of Eurasia. Analysis of vector strength from global port regions indicates that these NIS, which include amphipods, crustacean zooplankton, mussels and fishes, have been transported principally along dominant shipping routes from native or introduced habitats in northern and western Europe to the Great Lakes. A large group of additional taxa, many of which have extensive invasion histories, is available for transfer to the Great Lakes from key European ports. Thus, joint consideration of invasion corridors and the NIS species established in key donor ports provides an indication of taxa that may colonize the Great Lakes in future. Recent studies indicate that risk assessment may be extended even further for inland lakes subject to NIS invasion from the Great Lakes in cases where invasion vectors can be identified and quantified. Identification of invasion corridors and quantification of vector pathways, using lakes as model systems, provide a promising opportunity for the evolution of invasion biology from a largely descriptive science into a more predictive and quantitative discipline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beeton AM (1965) Eutrophication of the St Lawrence Great Lakes. Limnology and Oceanography 10: 240-254

    Google Scholar 

  • Borbely J (2001) Modelling the spread of the spiny waterflea (Bythotrephes longimanus) in inland lakes in Ontario using gravity models and GIS. Thesis, University of Windsor, Windsor, Ontario, 149 pp

    Google Scholar 

  • Bossenbroek JM,Nekola JC andKraft CE (2001) Prediction of longdistance dispersal using gravity models: zebra mussel invasion of inland lakes. Ecological Applications 11: 1778-1788

    Google Scholar 

  • Brown JH andLomolino MV (1998) Biogeography, 2nd edn. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Buchan LJ andPadilla DK (1999) Estimating the probability of long-distance overland dispersal of invading aquatic organisms. Ecological Applications 9: 254-265

    Google Scholar 

  • Carlton JT (1985) Transoceanic and interoceanic dispersal of coastal marine organisms: the biology of ballastwater. Oceanography and Marine Biology Annual Review 23: 313-371

    Google Scholar 

  • Carlton JT (1996) Pattern, process, and prediction in marine invasion ecology. Biological Conservation 78: 97-106

    Google Scholar 

  • Carlton JT (2000) Global change and biological invasions in the oceans. In: Mooney HA and Hobbs RJ (eds) Invasive Species in a Changing World, pp 31-53. Island Press, Covelo, California

    Google Scholar 

  • Carlton JT andGeller JB (1993) Ecological roulette: the global transport of nonindigenous marine organisms. Science 261: 78-82

    Google Scholar 

  • Carlton JT,Reid D andvan Leeuwen H (1995) The role of shipping in the introduction of nonindigenous aquatic organisms to the coastal waters of the United States (other than the Great Lakes) and an analysis of control options. United States Coast Guard and the National Sea Grant Program/Connecticut Sea Grant R/ES-6. United States Coast Guard, Marine Environment Protection Division. Report Number AD-A294809, Washington, 213 pp

  • Censky EJ,Hodge K andDudley J (1998) Over-water dispersal of lizards due to hurricanes. Nature 395: 556

    Google Scholar 

  • Clark JS (1998) Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. The American Naturalist 152: 204-224

    Google Scholar 

  • Cohen AN andCarlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279: 555-558

    Google Scholar 

  • Colautti RI,Niimi A J,van Overdijk CDA,Mills EL,Holeck K andMacIsaac HJ (2002) Spatial and temporal analysis of transoceanic shipping vectors to the Great Lakes. In: Ruiz G andCarlton JT (eds) Bioinvasions: Pathways, Vectors, and Management Strategies. Island Press, Washington, DC (in press)

    Google Scholar 

  • Cristescu ME,Hebert PDN,Witt JDS,MacIsaac HJ andGrigorovich IA (2001) An invasion history for Cercopagis pengoi based on mitochondrial gene sequences. Limnology and Oceanography 46: 224-229

    Google Scholar 

  • Davis MA,Grime JP andThompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88: 528-534

    Google Scholar 

  • Dediu II (1980) Amphipods of Fresh and Brackish Waters of the Southwestern USSR. Shtiintsa, Kishinev [in Russian]

  • Den Hartog C, van den Brink FWB andvan der Velde G (1992) Why was the invasion of the river Rhine by Corophium curvispinum and Corbicula species so successful? Journal of Natural History 26: 1121-1129

    Google Scholar 

  • Dobson HFH (1984) Lake Ontario water chemistry atlas. Environment Canada, Scientific Series # 139, Burlington, Ontario

    Google Scholar 

  • Dukes JS andMooney HA (1999) Does global change increase the success of biological invaders? Trends in Ecology and Evolution 14: 135-139

    Google Scholar 

  • Dumont HJ (1998) The Caspian Lake: history, biota, structure, and function. Limnology and Oceanography 43: 44-52

    Google Scholar 

  • Elton C (1958) The Ecology of Invasions by Animals and Plants. Methuen, London

    Google Scholar 

  • Graumlich LJ and Davis MB (1993) Holocene variation in spatial scales of vegetation pattern in the upper Great Lakes. Ecology 74: 826-839

    Google Scholar 

  • Grevstad FS (1999) Experimental invasions using biological control introductions: the influence of release size on the chance of population establishment. Biological Invasions 1: 313-323

    Google Scholar 

  • Griffiths RW,Schloesser DW,Leach JH andKovalak WP (1991) Distribution and dispersal of the zebra mussel (Dreissena polymorpha) in the Great Lakes region. Canadian Journal of Fisheries and Aquatic Sciences 48: 1381-1388

    Google Scholar 

  • Grigorovich IA, Dovgal IV, MacIsaac HJ and Monchenko VI (2001) Acineta nitocrae: a new suctorian epizooic on nonindigenous harpacticoid copepods, Nitocra hibernica and N. incerta, in the Laurentian Great Lakes. Archiv für Hydrobiologie 152: 161-176

    Google Scholar 

  • Hebert PDN andCristescu M (2002) Genetic perspective of invasions: the case of Cladocera. Canadian Journal of Fisheries and Aquatic Sciences (in press)

  • Hebert PDN,Muncaster BW andMackie GL (1989) Ecological and genetic studies on Dreissena polymorpha (Pallas): a new mollusc in the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 46: 1587-1591

    Google Scholar 

  • Hengeveld R (1989) Dynamics of Biological Invasions. Chapman & Hall, London, 176 pp

    Google Scholar 

  • Higgins SI andRichardson DM (1999) Predicting plant migration rates in a changing world: the role of long-distance dispersal. The American Naturalist 153: 464-475

    Google Scholar 

  • Horvath TG,Whitman RL andLast L (2001) Establishment of two invasive crustaceans (Copepoda: Harpacticoida) in the nearshore sands of Lake Michigan. Canadian Journal of Fisheries and Aquatic Sciences 58: 1261-1264

    Google Scholar 

  • Jaždžewski K (1980) Range extensions of some gammaridiean species in European inland waters caused by human activity. Crustaceana Supplement 6: 84-107

    Google Scholar 

  • Johnson LE andCarlton JT (1996) Post-establishment spread in large-scale invasions: dispersal mechanisms of the zebra mussel Dreissena polymorpha. Ecology 77: 1686-1690

    Google Scholar 

  • Johnson LE,Ricciardi A andCarlton JT (2001) Overland dispersal of aquatic invasive species: a risk assessment of transient recreational boating. Ecological Applications 11: 1789-1799

    Google Scholar 

  • Jones M (1991) Marine organisms transported in ballast water: a review of the Australian scientific position. Bureau of Rural Resources Bulletin No. 11, Australian Government Publishing Service, Canberra

    Google Scholar 

  • Ketelaars HAM,Lambregts-van de Clundert FE,Carpentier CJ,Wagenvoort AJ andHoogenboezem W (1999) Ecological effects of the mass occurrence of the Ponto-Caspian invader, Hemimysis anomala G.O. Sars, 1907 (Crustacea: Mysidacea), in a freshwater storage reservoir in the Netherlands, with notes on autecology and new records. Hydrobiologia 394: 233-248

    Google Scholar 

  • Kolar CS andLodge DM (2001) Progress in invasion biology: predicting invaders. Trends in Ecology and Evolution 16: 199-204

    Google Scholar 

  • Kot M,Lewis MA andvan den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77: 2027-2042

    Google Scholar 

  • Kraft CR andJohnson LE (2000) Regional differences in rates and patterns of North American inland lake invasions by zebra mussels (Dreissena polymorpha). Canadian Journal of Fisheries and Aquatic Sciences 57: 1-9

    Google Scholar 

  • Kramer JR (1968) Mineralwater chemistry. Great Lakes Report # 38, Great Lakes Research Division, University of Michigan, Ann Arbor

    Google Scholar 

  • Levine JM (2000) Species diversity and biological invasions: relating local process to community pattern. Science 288: 852-854

    Google Scholar 

  • Levine JM andD'Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87: 15-26

    Google Scholar 

  • Lewis MA (1997) Variability, patchiness, and jump dispersal in the spread of an invading population. In: Tilman D andKarieva P (eds) Spatial Ecology. The Role of Space in Population Dynamics and Interspecific Interactions, pp 46-69. Monographs in Population Biology, Vol 30. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Locke A,Reid DM,van Leeuwen HC,Sprules WG andCarlton JT (1993) Ballast water exchange as a means of controlling dispersal of freshwater organisms by ships. Canadian Journal of Fisheries and Aquatic Sciences 50: 2086-2093

    Google Scholar 

  • Lodge DM (1993) Biological invasions: lessons for ecology. Trends in Ecology and Evolution 8: 133-137

    Google Scholar 

  • Lodge DM,Stein RA,Brown KM,Covich AP,Brönmark C,Garvey JE andKlosiewski SP (1998) Predicting impact of freshwater exotic species on native biodiversity: challenges in spatial scaling. Australian Journal of Ecology 23: 53-67

    Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80: 1522-1536

    Google Scholar 

  • Lyons KG andSchwartz MW (2001) Rare species loss alters ecosystem function-invasion resistance. Ecology Letters 4: 358-365

    Google Scholar 

  • MacIsaac HJ (1999) Biological invasions in Lake Erie: past present and future. In: Munawar M andEdsall T (eds) State of Lake Erie: Past, Present and Future, pp 305-322. Backhuys, Leiden, The Netherlands

    Google Scholar 

  • MacIsaac HJ,Grigorovich IA,Hoyle JA,Yan ND andPanov VE (1999) Invasion of Lake Ontario by the Ponto-Caspian predatory cladoceran Cercopagis pengoi. Canadian Journal of Fisheries and Aquatic Sciences 56: 1-5

    Google Scholar 

  • Mack RN andLonsdale M (2001) Humans as global plant dispersers; getting more than we bargained for. Bioscience 51: 95-102

    Google Scholar 

  • Mills EL,Leach JH,Carlton JT andSecor CL (1993) Exotic species in the Great Lakes: a history of biotic crises and anthropogenic introductions. Journal of Great Lakes Research 19: 1-54

    Google Scholar 

  • Mordukhai-Boltovskoi PD (1960) Caspian Fauna in the Azov and Black Sea Basin. Izdatelstvo Akademii Nauk SSSR, Moscow-Leningrad [in Russian]

    Google Scholar 

  • Mordukhai-Boltovskoi PD (1964) Caspian fauna beyond the Caspian Sea. Internationale Revue der gesamten Hydrobiologie 49: 139-176

    Google Scholar 

  • Mordukhai-Boltovskoi PD (1979) Composition and distribution of Caspian fauna in the light of modern data. Internationale Revue der gesamten Hydrobiologie 64: 1-38

    Google Scholar 

  • Moyle PB andLight T (1996) Biological invasions of fresh water: empirical rules and assembly theory. Biological Conservation 78: 149-161

    Google Scholar 

  • Neubert MG andCaswell H (2000) Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations. Ecology 81: 1613-1628

    Google Scholar 

  • Nikolaev II (1979) Ecological consequences of unintended anthropogenic distribution of aquatic fauna and flora. In: Smirnov NN (ed) Ecological Prognostication, pp 76-93. Nauka, Moscow [in Russian]

    Google Scholar 

  • Olenin S andLeppäkoski E (1999) Non-native animals in the Baltic Sea: alteration of benthic habitats in coastal inlets and lagoons. Hydrobiologia 393: 233-243

    Google Scholar 

  • Pinkster S,Scheepmaker M,Platvoet D andBroodbakker N (1992) Drastic changes in the amphipod fauna (Crustacea) of Dutch inland waters during the last 25 years. Bijdragen tot de Dierkunde 61: 193-204

    Google Scholar 

  • Rahel FJ (2000) Homogenization of fish faunas across the Unites States. Science 288: 854-856

    Google Scholar 

  • Rajagopal S,van der Velde G,Paffen BGP andbij de Vaate A (1997) Ecology and impact of exotic amphipod, Corophium curvispinum Sars, 1895 (Crustacea: Amphipoda), in the River Rhine and Meuse. Institute for Inland Water Management and Waste Water Treatment, Lelystad, 89 pp

    Google Scholar 

  • Ricciard A (2001) Facilitative interactions among aquatic invaders: is an’ invasional meltdown’ occurring in the Great Lakes? Canadian Journal of Fisheries and Aquatic Sciences 58: 2513-2525

    Google Scholar 

  • Ricciardi A andMacIsaac HJ (2000) Recent mass invasion of the North American Great Lakes by Ponto-Caspian species. Trends in Ecology and Evolution 15: 62-65

    Google Scholar 

  • Ricciardi A andRasmussen JB (1998) Predicting the identity and impact of future biological invaders: a priority for aquatic resource management. Canadian Journal of Fisheries and Aquatic Sciences 55: 1759-1765

    Google Scholar 

  • Ricciardi A,Neves RJ andRasmussen JB (1998) Impending extinctions of North American freshwater mussels (Unionoida) following the zebra mussel (Dreissena polymorpha) invasion. Journal of Animal Ecology 67: 613-619

    Google Scholar 

  • Richards RP (1981) Historical trends in water chemistry in the US nearshore zone, central basin, Lake Erie. Water Quality Laboratory, Heidelberg College, Ohio, 31 pp

    Google Scholar 

  • Richter BD,Braun DP,Mendelson MA andMaster LL (1997) Threats to imperiled freshwater fauna. Conservation Biology 11: 1081-1093

    Google Scholar 

  • Ruiz GM,Fofonoff PW,Carlton JT,Wonham MJ andHines AH (2000) Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annual Review of Ecology and Systematics 31: 481-531

    Google Scholar 

  • Sala OE,Chapin III FS,Armesto J,Berlow E,Bloomfield J,Dirzo R,Huber-Sanwald E,Huenneke LF,Jackson RB,Kinzig A,Leeman RS,Lodge DM,Mooney HA,Oesterheld M,Poff NL,Sykes MT,Walker BH,Walker M andWall DH (2000) Global biodiversity scenarios for the year 2100. Science 287: 1770-1774.

    Google Scholar 

  • Sheath RG (1987) Invasions into the Laurentian Great Lakes by marine algae. Ergebnisse der Limnologie/Advances in Limnology (Stuttgart) 25: 165-186

    Google Scholar 

  • Shigesada N andKawasaki K (1997) Biological Invasions: Theory and Practice. Oxford University Press, New York, 205 pp

    Google Scholar 

  • Shigesada N,Kawasaki K andTakeda Y (1995) Modeling strati-fied diffusions in biological invasions. American Naturalist 146: 229-251

    Google Scholar 

  • Shurin J (2000) Dispersal limitation, invasion resistance and the structure of pond zooplankton communities. Ecology 81: 3074-3086

    Google Scholar 

  • Simberloff D andvon Holle B (1999) Synergistic interactions of nonindigenous species: invasional meltdown? Biological Invasions 1: 21-32

    Google Scholar 

  • Skellam JG (1951) Random dispersal in a theoretical population. Biometrika 38: 196-218

    Google Scholar 

  • Smith LD,Wonham MJ,McCann LD,Ruiz GM,Hines AH andCarlton JT (1999) Invasion pressure to a ballast-flooded estuary and an assessment of inoculant survival. Biological Invasions 1: 67-87

    Google Scholar 

  • Spidle AP,Marsden JE andMay B (1994) Identification of the Great Lakes quagga mussel as Dreissena bugensis from the Dnieper-River, Ukraine, on the basis of allozyme variation. Canadian Journal of Fisheries and Aquatic Sciences 51: 1485-1489

    Google Scholar 

  • Stachowicz JJ,Whitlatch RB andOsman RW (1999) Species diversity and invasion resistance in a marine ecosystem. Science 286: 1577-1579

    Google Scholar 

  • Stadler J,Trefflich A,Klotz S andBrandl R (2000) Exotic plant species invade hot spots: the alien flora of northwestern Kenya. Ecography 23: 169-176

    Google Scholar 

  • Stohlgren TJ,Binkley D,Chong GW,Kalkhan MA,Schell LD,Bull KA,Otsuki Y,Newman G,Bashkin M andSon Y (1999) Exotic plant species invade hot spots of native plant diversity. Ecological Monographs 69: 25-46

    Google Scholar 

  • United States Coast Guard (1993) Ballast water management for vessels entering the Great Lakes. 33-CFR Part 151.1510

  • Väinölä R,Riddoch BJ,Ward RD andJones RI (1994) Genetic zoogeography of the Mysis relicta species group (Crustacea: Mysidacea) in Northern Europe and North America. Canadian Journal of Fisheries and Aquatic Sciences 51: 1490-1505

    Google Scholar 

  • van den Brink FWB,Paffen BGP,Oosterbroek FMJ andvan der Velde G (1993a) Immigration of Echinogammarus ischnus (Stebbing, 1906) (Crustacea, Amphipoda) into the Netherlands via the lower Rhine. Bulletin Zoölogisch Museum Universiteit van Amsterdam 13: 167-170

    Google Scholar 

  • van den Brink FWB,van der Velde G andBij de Vaate A (1993b) Ecological aspects, explosive range extension and impact of a mass invader, Corophium curvispinum Sars, 1895 (Crustacea: Amphipoda), in the Lower Rhine (The Netherlands). Oecologia 93: 224-232

    Google Scholar 

  • van derVelde G,Rajagopal S,Kelleher B,Muskó I andBij deVaate A (2000) Ecological impact of crustacean invaders: general considerations and examples from the Rhine River. In: von Vaupel Klein JC andSchram FR (eds) The Biodiversity Crisis and Crustacea, pp 3-33. Proceedings of the Fourth International Crustacean Congress, Vol 2. Balkema, Rotterdam, The Netherlands

    Google Scholar 

  • Witt JDS,Hebert PDN andMorton WB (1997) Echinogammarus ischnus: another crustacean invader in the Laurentian Great Lakes basin. Canadian Journal of Fisheries and Aquatic Sciences 54: 264-268

    Google Scholar 

  • Zenkevitch L (1963) Biology of the Seas of the USSR. Wiley Interscience, New York, 920 pp

    Google Scholar 

  • Zhuravlieva LA (1989) The regime of water salinity. In: Zaitsev YP (ed) The Dnieper-Bug Estuarine Ecosystem, pp 40-58. Naukova Dumka, Kiev [in Russian]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh J. MacIsaac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacIsaac, H.J., Grigorovich, I.A. & Ricciardi, A. Reassessment of Species Invasions Concepts: The Great Lakes Basin as a Model. Biological Invasions 3, 405–416 (2001). https://doi.org/10.1023/A:1015854606465

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015854606465

Navigation