Skip to main content
Log in

Chemical Stability of Pentostatin (NSC-218321), a Cytotoxic and Immunosuppressant Agent

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Pentostatin, an unusual nucleoside of natural origin, has been used for the treatment of hairy cell leukemia, as an immunosuppressant agent, and as an inhibitor of adenosine deaminase. The studies of the physicochemical properties and solution stability of pentostatin (1) are important to the development of a parenteral formulation for extensive preclinical and clinical testing. Pentostatin displayed apparent pK a values at 25 ± 0.1°C and ionic strength of 0.15 M of 2.03 ± 0.03 and 5.57 ± 0.14 (spectrophotometric) and 5.50 ± 0.02 (potentiometric) for N1 and the amidine nitrogen in the seven-membered ring, respectively, which are the most likely protonation sites. The rates of degradation of pentostatin were determined as a function of pH, buffer concentration, and temperature. In the pH range 1.0–4.0, pentostatin undergoes acid-catalyzed glycosidic cleavage leading to the formation of the base compound, 2, and 2-deoxyribose. A carbonium ion mechanism in which C–N bond cleavage was the rate-determining step was consistent with the data. In the pH range 6.5–10.5, the imine bond at C5 position in pentostatin is hydrolyzed to form the corresponding formamide. Pentostatin hydrolysis in this pH range was independent of pH. At pH >11, pentostatin decomposes to nonchromophoric products probably through multiple-step base-catalyzed hydrolytic mechanisms. Pentostatin appears to be quite stable after reconstitution of a lyophilized experimental dosage form. Care must be taken if pentostatin is extensively diluted with 5% dextrose in water, as pentostatin stability is compromised at pH values less than 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. P. Agarwal, T. Spector, and R. E. Parks, Jr. Biochem. Pharmacol. 26:359–367 (1977).

    Google Scholar 

  2. W. M. Shannon and F. M. Schabel, Jr. Pharmacol. Ther. 11:263–390 (1980).

    Google Scholar 

  3. P. W. K. Woo, H. W. Dion, S. M. Lange, L. F. Dahl, and L. J. Durham. J. Heterocycl. Chem. 11:641–643 (1974).

    Google Scholar 

  4. D. C. Baker, S. R. Putt, and H. D. Hollis Showalter. J. Heterocycl. Chem. 20:629–634 (1983).

    Google Scholar 

  5. E. Chan, S. R. Putt, H. D. Hollis Showalter, and D. C. Baker. J. Org. Chem. 47:3457–3464 (1982).

    Google Scholar 

  6. S. R. Putt and D. C. Baker. J. Am. Chem. Soc. 101:6127–6128 (1979).

    Google Scholar 

  7. E. H. Kraut, B. A. Bouroncle, and M. R. Grever. Blood 68:1119–1122 (1986).

    Google Scholar 

  8. A. Albert and E. D. Serjeant. In Ionization Constant of Acids and Bases, John Wiley & Sons, New York, 1962, pp. 9–22, 44–59.

    Google Scholar 

  9. B. D. Anderson, M. B. Wygant, T. X. Xiang, W. A. Waugh, and V. J. Stella. Int. J. Pharm. 45:27–37 (1988).

    Google Scholar 

  10. B. I. Perillo, B. Fernandez, and S. Lamdan. J.C.S. Perkin II:2068–2072 (1977).

    Google Scholar 

  11. E. R. Garrett and P. J. Mehta. J. Am. Chem. Soc. 94:8532–8541 (1972).

    Google Scholar 

  12. E. R. Garrett and P. J. Mehta. J. Am. Chem. Soc. 94:8542–8547 (1972).

    Google Scholar 

  13. J. L. York. J. Org. Chem. 46:2171–2173 (1981).

    Google Scholar 

  14. R. Th. Morrison and R. N. Boyd, Organic Chemistry, 3rd ed., Allyn and Bacon, 1973.

  15. W. Pigman, The Carbohydrates, Chemistry, Biochemistry, Physiology. Academic Press, New York, 1957.

    Google Scholar 

  16. E. Breitmaier and W. Voelter. Monographs in Modern Chemistry, Vol. 5, Weinheim, Bergatr, 1974.

  17. G. W. Kenner. In G. E. Wolsteholme and C. M. O'Connor (eds.), The Chemistry and Biology of Purines, Little, Brown, Boston, 1957, p. 312.

    Google Scholar 

  18. J. A. Zoltewicz, D. F. Clark, T. W. Sharpless, and G. Grahe. J. Am. Chem. Soc. 92:1741–1750 (1970).

    Google Scholar 

  19. J. A. Zoltewicz and D. F. Clark. J. Org. Chem. 37:1193–1197 (1972).

    Google Scholar 

  20. F. L. Boschke, W. Fresenius, J. F. K. Huber, E. Pungor, G. A. Rechnitz, W. Simon, and S. Th. West. Tables of Spectral Data for Structure Determination of Organic Compounds, Springer-Verlag, New York, 1983, P.H.-155.

    Google Scholar 

  21. R. H. DeWolfe and R. M. Roberts. J. Am. Chem. Soc. 75:2942–2947 (1953).

    Google Scholar 

  22. R. H. DeWolfe. In S. Patai (ed.), The Chemistry of Amidines and Imidates, John Wiley & Sons, 1975, Chap 8, pp. 349–384.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Razzak, L.A., Benedetti, A.E., Waugh, W.N. et al. Chemical Stability of Pentostatin (NSC-218321), a Cytotoxic and Immunosuppressant Agent. Pharm Res 7, 452–460 (1990). https://doi.org/10.1023/A:1015852329748

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015852329748

Navigation