Skip to main content
Log in

Methods of Generalized and Functional Separation of Variables in Hydrodynamic and Heat- and Mass-Transfer Equations

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

New direct methods are suggested for constructing exact solutions of hydrodynamic and heat- and mass-transfer equations by the generalized and functional separation of variables. These methods are based on analyzing functional and functional differential equations involving unknown functions of different variables. Specific examples are considered, and new exact solutions are obtained for the equations of a hydrodynamic boundary layer, the Navier–Stokes equations, and the nonlinear heat- and mass-transfer equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1972.

    Google Scholar 

  2. Vladimirov, V.S. and Zharinov, V.V., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Fizmatlit, 2000.

    Google Scholar 

  3. Polyanin, A.D., Spravochnik po lineinym uravneniyam matematicheskoi fiziki (Handbook of Linear Equations of Mathematical Physics), Moscow: Fizmatlit, 2001.

    Google Scholar 

  4. Kamke, E., Differentialgleichungen. Lösungenmethoden und Lösungen, Leipzig: Geest & Portig, 1961. Translated under the title Spravochnik po differentsial'nym uravneniyam v chastnykh proizvodnykh pervogo poryadka, Moscow: Nauka, 1966.

    Google Scholar 

  5. Zwillinger, D., Handbook of Differential Equations, San Diego: Academic, 1998.

    Google Scholar 

  6. Polyanin, A.D., Zaitsev, V.F., and Moussiaux, A., Handbook of First Order Partial Differential Equations, London: Taylor and Fransis, 2002.

    Google Scholar 

  7. Ovsyannikov, L.V., Group Properties of Nonlinear Heat Conduction Equations, Dokl. Akad. Nauk SSSR, 1959, vol. 125, no. 3, p. 492.

    Google Scholar 

  8. CRC Handbook of Lie Group to Differential Equations, Ibragimov, N.H., Ed., Boca Raton: CRC, 1994.

    Google Scholar 

  9. Doyle, P.W., Separation of Variables for Scalar Evolution Equations in One Space Dimension, J. Phys. A: Math. Gen., 1996, vol. 29, p. 7581.

    Google Scholar 

  10. Zaitsev, V.F. and Polyanin, A.D., Spravochnik po differentsial'nym uravneniyam s chastnymi proizvodnymi: Tochnye resheniya (Handbook of Partial Differential Equations: Exact Solutions), Moscow: Mezhdunarodnaya Programma Obrazovaniya, 1996.

    Google Scholar 

  11. Polyanin, A.D., Vyaz'min, A.V., Zhurov, A.I., and Kazenin, D.A., Spravochnik po tochnym resheniyam uravnenii teplo-i massoperenosa (Handbook of Exact Solutions to Heat-and Mass-Transfer Equations), Moscow: Faktorial, 1998.

    Google Scholar 

  12. Galaktionov, V.A. and Posashkov, S.A., New Exact Solutions to Parabolic Equations with Quadratic Nonlinearities, Zh. Vychisl. Mat. Mat. Fiz., 1989, vol. 29, no. 4, p. 497.

    Google Scholar 

  13. Galaktionov, V.A., Posashkov, S.A., and Svirshchevskii, S.R., Generalized Separation of Variables for Differential Equations with Polynomial Right-Hand Sides, Differentsial'nye Uravneniya, 1995, vol. 31, no. 2, p. 253.

    Google Scholar 

  14. Galaktionov, V.A. and Posashkov, S.A., Exact Solutions and Invariant Spaces for Nonlinear Equations of Gradient Diffusion, Zh. Vychisl. Mat. Mat. Fiz., 1994, vol. 34, no. 3, p. 374.

    Google Scholar 

  15. Galaktionov, V.A., Invariant Subspace and New Explicit Solutions to Evolution Equations with Quadratic Non-linearities, Proc. Roy. Soc. Edinburgh, 1995, vol. 125, no. 2, p. 225.

    Google Scholar 

  16. Svirshchevskii, S.R., Lie–Backlund Symmetries of Linear ODEs and Generalized Separation of Variables in Nonlinear Equations, Phys. Lett. A, 1995, vol. 199, p. 344.

    Google Scholar 

  17. Grundland, A.M. and Infeld, E., A Family of Nonlinear Klein–Gordon Equations and Their Solutions, J. Math. Phys., 1992, vol. 33, no. 7, p. 2498.

    Google Scholar 

  18. Miller, J., Jr. and Rubel, L.A., Functional Separation of Variables for Laplace Equations in Two Dimensions, J. Phys. A, 1993, vol. 26, no. 8, p. 1901.

    Google Scholar 

  19. Zhdanov, R.Z., Separation of Variables in the Non-Linear Wave Equation, J. Phys. A, 1994, vol. 27, p. 291.

    Google Scholar 

  20. Andreev, V.K., Kaptsov, O.V., Pukhnachev, V.V., and Rodionov, A.A., Primenenie teoretiko-gruppovykh metodov v gidrodinamike (Group-Theoretical Methods in Fluid Dynamics), Novosibirsk: Nauka, 1994.

    Google Scholar 

  21. Doyle, P.W. and Vassiliou, P.J., Separation of Variables for the 1-Dimensional Non-Linear Diffusion Equation, Int. J. Non-Linear Mech., 1998, vol. 33, no. 2, p. 315.

    Google Scholar 

  22. Polyanin, A.D., Zhurov, A.I., and Vyaz'min, A.V., Exact Solutions of Nonlinear Heat-and Mass-Transfer Equations, Teor. Osn. Khim. Tekhnol., 2000, vol. 34, no. 5, p. 451.

    Google Scholar 

  23. Polyanin, A.D., Transformations and Exact Solutions Containing Arbitrary Functions for Boundary-Layer Equations, Dokl. Akad. Nauk, 2001, vol. 379, no. 3, p. 334.

    Google Scholar 

  24. Polyanin, A.D. and Zaitsev, V.F., Equations of an Unsteady-State Laminar Boundary Layer: General Transformations and Exact Solutions, Teor. Osn. Khim. Tekhnol., 2001, vol. 35, no. 6, p. 563.

    Google Scholar 

  25. Polyanin, A.D., Exact Solutions of Navier–Stokes Equations with Generalized Separation of Variables, Dokl. Akad. Nauk, 2001, vol. 380, no. 4, p. 491.

    Google Scholar 

  26. Loitsyanskii, L.G., Mekhanika zhidkosti i gaza (Fluid Mechanics), Moscow: Nauka, 1973.

    Google Scholar 

  27. Schlichting, H., Boundary-Layer Theory, New York: McGraw-Hill, 1968. Translated under the title Teoriya pogranichnogo sloya, Moscow: Nauka, 1974.

    Google Scholar 

  28. Pukhnachev, V.V., Group Properties of Navier–Stokes Equations for the Flat System, Zh. Prikl. Mekh. Tekh. Fiz., 1960, no. 1, p. 83.

    Google Scholar 

  29. Ovsyannikov, L.V., Gruppovoi analiz differentsial'nykh uravnenii (Group Analysis of Differential Equations), Moscow: Nauka, 1978.

    Google Scholar 

  30. Polyanin, A.D., Handbook of Linear Partial Differential Equations for Engineers and Scientists (Supplement B), Boca Raton: CRC, 2002.

    Google Scholar 

  31. Zaitsev, V.F. and Polyanin, A.D., Spravochnik po obyknovennym differentsial'nym uravneniyam (Handbook of Ordinary Differential Equations), Moscow: Fizmatlit, 2001.

    Google Scholar 

  32. Pavlovskii, Yu.N., Analysis of Some Invariant Solutions of Boundary-Layer Equations, Zh. Vychisl. Mat. Mat. Fiz., 1961, vol. 1, no. 2, p. 280.

    Google Scholar 

  33. Ignatovich, N.V., Equations of the Stationary Boundary Layer: Partially Invariant Solutions Irreducible to Invariants, Mat. Zametki, 1993, vol. 53, no. 1, p. 140.

    Google Scholar 

  34. Polyanin, A.D., Exact Solutions and Transformations of the Equations of a Stationary Laminar Boundary Layer, Teor. Osn. Khim. Tekhnol., 2001, vol. 35, no. 4, p. 339.

    Google Scholar 

  35. Crabtree, F.L., Kuchemann, D., and Sowerby, L., Laminar Boundary Layers, Rosenhead, L., Ed., Oxford: Oxford Univ. Press, 1963.

    Google Scholar 

  36. Burde, G.I., The Construction of Special Explicit Solutions of the Boundary-Layer Equations: Steady Flows, Quart. J. Mech. Appl. Math., 1994, vol. 47, no. 2, p. 247.

    Google Scholar 

  37. Clarkson, P.A. and Kruskal, M.D., New Similarity Reductions of the Boussinesq Equation, J. Math. Phys., 1989, vol. 30, no. 10, p. 2201.

    Google Scholar 

  38. Dorodnitsyn, V.A., Invariant Solutions to the Equation of Nonlinear Heat Conduction with a Source, Zh. Vychisl. Mat. Mat. Fiz., 1982, vol. 22, no. 6, p. 1393.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyanin, A.D., Zhurov, A.I. Methods of Generalized and Functional Separation of Variables in Hydrodynamic and Heat- and Mass-Transfer Equations. Theoretical Foundations of Chemical Engineering 36, 201–213 (2002). https://doi.org/10.1023/A:1015848717913

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015848717913

Keywords

Navigation