Skip to main content
Log in

Effect of Zinc Binding on the Structure and Stability of Fibrolase, a Fibrinolytic Protein from Snake Venom

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Fibrolase is a metalloprotease with potential use as a fibrinolytic agent. Loss of the intrinsic zinc atom leads to a rapid decrease in enzymatic activity. Circular dichroism measurements indicate that there is a partial unfolding of an α-helical section of the protein concomitant with the loss of zinc. Removal of zinc can be affected by elevated temperatures, acidic pH values, and addition of chelating agents. At low molar concentrations, both ethylenediaminetet-raacetic acid (EDTA) and dithiothreitol (DTT) were found to remove zinc efficiently. Analysis of the sequence of fibrolase identified a segment which possessed a high degree of homology with the metal binding site of other zinc proteases, such as thermolysin and the collagenases. However, the putative zinc binding site in fibrolase lacks the additional glutamate ligand found in thermolysin and subtilisin. This sequence is also predicted to adopt an α-helical conformation. Together, these data indicate that there is a well-defined metal binding site in fibrolase and that metal binding is the most important factor governing the stability of this protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Randolph, S. H. Chamberlain, H.-L. C. Chu, A. D. Retzios, F. S. Markland, Jr., and F. R. Masiarz. Amino acid sequence of fibrolase, a direct-acting fibrinolytic enzyme from Agkistrodon c. contorttrix venom. Protein Sci. (1992), in press.

  2. N. K. Ahmed, K. D. Tennant, F. S. Markland, and J. P. Lacz. Biochemical characteristics of fibrolase, a fibrinolytic protease from snake venom. Haemostasis 20:147–154 (1990).

    Google Scholar 

  3. D. Pretzer, B. Schulteis, C. Smith, D. G. Vander Velde, J. W. Mitchell, and M. C. Manning. Fibrolase, a fibrinolytic protein from snake venom. In Y. J. Wang and R. Pearlman (eds.), Pharmaceutical Biotechnology, Vol. 5, Plenum Press, New York (1992), in press.

    Google Scholar 

  4. F. S. Markland, K. N. N. Reddy, and L. Guan. Purification and characterization of a direct-acting fibrinolytic enzyme from Southern copperhead venom. In H. Pirkle and F. S. Markland (eds.), Hemostasis and Animal Venoms, Marcel Dekker, New York, 1988, pp. 173–189.

    Google Scholar 

  5. D. Pretzer, B. S. Schulteis, C. D. Smith, D. G. Vander Velde, J. W. Mitchell, and M. C. Manning. Stability of the thrombolytic protein fibrolase. Effect of temperature and pH on activity and conformation. Pharm. Res. 8:1103–1112 (1991).

    Google Scholar 

  6. J. Charney and R. M. Tomarelli. A colorimetric method for the determination of the proteolytic activity of duodenal juice. J. Biol. Chem. 171:501–505 (1947).

    Google Scholar 

  7. D. Eisenberg. Three-dimensional structure of membrane and surface proteins. Annu. Rev. Biochem. 53:595–623 (1984).

    Google Scholar 

  8. D. Eisenberg, R. M. Weiss, and T. C. Terwilliger. The helical hydrophobic moment: A measure of the amphiphilicity of a helix. Nature 299:371–374 (1982).

    Google Scholar 

  9. J. Miller, A. D. McLachlan, and A. Klug. Repetitive zincbinding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4:1609–1614 (1985).

    Google Scholar 

  10. J. B. Bjarnason and A. T. Tu. Proteolytic specificity and cobalt exchange of hemorrhagic toxin e, a zinc protease isolated from the venom of the Western diamondback rattlesnake (Crotalus atrox). Biochemistry 22:3370–3374 (1983).

    Google Scholar 

  11. B. L. Vallee and D. S. Auld. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29:5647–5659 (1990).

    Google Scholar 

  12. C. V. Jongeneel, J. Bouvier, and A. Bairoch. A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett. 242:211–214 (1989).

    Google Scholar 

  13. C. T. Chang, C.-S. C. Wu, and J. T. Yang. Circular dichroic analysis of protein conformation: Inclusion of beta turns. Anal. Biochem. 91:13–31 (1978).

    Google Scholar 

  14. A. J. Park, L. M. Matrisian, A. F. Kells, R. Pearson, Z. Yuan, and M. Navre. Mutational analysis of the transin (rat stromelysin) autoinhibitor region demonstrates a role for residues surrounding the “cyseine switch.” J. Biol. Chem. 266:1584–1590 (1991).

    Google Scholar 

  15. H. Cid, M. Bunster, E. Arrigada, and M. Campos. Prediction of secondary structure of proteins by means of hydrophobicity profiles. FEBS Lett. 150:247–252 (1982).

    Google Scholar 

  16. P. Y. Chou and G. D. Fasman. Empirical predictions of protein conformation. Annu. Rev. Biochem. 47:251–276 (1978).

    Google Scholar 

  17. J. Garnier, D. J. Osguthorpe, and B. Robson. Analysis of the accuracy and implication of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120:97–120 (1978).

    Google Scholar 

  18. J. D. Shannon, E. N. Baramova, J. B. Bjarnason, and J. W. Fox. Amino acid sequence of a Crotalus atrox venom metalloproteinase which cleaves type IV collagen and gelatin. J. Biol. Chem. 264:11575–11583 (1989).

    Google Scholar 

  19. J. B. Bjarnason and A. T. Tu. Hemorrhagic toxins from Western diamondback rattlesnake (Crotalus atrox) venom: Isolation and characterization of five toxins and the role of zinc in hemorrhagic toxin e. Biochemistry 17:3396–3404 (1978).

    Google Scholar 

  20. T. Nikai, H. Ishizaki, A. T. Tu, and H. Sugihara. Presence of zinc in proteolytic hemorrhagic toxin isolated from Agkistrodon acutus venom. Comp. Biochem. Physiol. 72C:103–106 (1982).

    Google Scholar 

  21. M. R. Ghadiri and C. Choi. Secondary structure nucleation in peptides. Transition metal ion stabilized alpha helices. J. Am. Chem. Soc. 112:1630–1632 (1990).

    Google Scholar 

  22. M. R. Ghadiri and A. K. Fernholz. Peptide architecture. Design of stable alpha-helical metallopeptides via a novel exchange-inert Ru(III) complex. J. Am. Chem. Soc. 112:9633–9635 (1990).

    Google Scholar 

  23. F. Ruan, Y. Chen, and P. B. Hopkins. Metal ion enhanced helicity in synthetic peptides containing unnatural metal-ligating residues. J. Am. Chem. Soc. 112:9403–9404 (1990).

    Google Scholar 

  24. W. DeW. Horrocks, Jr., J. N. Ishley, B. Holmquist, and J. S. Thompson. Structural and electronic mimics of the active site of cobalt(II)-substituted zinc metalloenzymes. J. Inorg. Biochem. 12:131–141 (1980).

    Google Scholar 

  25. B. Thomas and A. Wollmer. Cobalt probing of structural alternatives for insulin in solution. Biol. Chem. Hoppe-Seyler 370:1235–1244 (1989).

    Google Scholar 

  26. J. Baum, C. M. Dobson, P. A. Evans, and C. Hanley. Characterization of a partly unfolded protein by NMR methods: Studies on the molten globule state of guinea pig alpha-lactalbumin. Biochemistry 28:7–13 (1989).

    Google Scholar 

  27. Y. Goto and A. L. Fink. Conformational states of β-lactamase: Molten-globule states at acidic and alkaline pH with high salt. Biochemistry 28:945–952 (1989).

    Google Scholar 

  28. T. M. Przybycien and J. E. Bailey. Secondary structure perturbations in salt-induced protein precipitates. Biochim. Biophys. Acta 1076:103–111 (1991).

    Google Scholar 

  29. D. G. Hanguer, A. F. Monzingo, and B. W. Mathews. An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides. Biochemistry 23:5730–5741 (1984).

    Google Scholar 

  30. J. P. Segrest, H. De Loof, J. G. Dohlman, C. G. Brouilette, and G. M. Anantharamaiah. Amphipathic helix motif: Classes and properties. Proteins Struct. Funct. Genet. 8:103–117 (1990).

    Google Scholar 

  31. J. G. Dohlman, H. De Loof, M. Prabhakaran, W. J. Koopman, and J. P. Segrest. Identification of peptide hormones of the amphipathic helix class using the helical hydrophobic moment algorithm. Proteins Struct. Funct. Genet. 6:61–69 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pretzer, D., Schulteis, B., Vander Velde, D.G. et al. Effect of Zinc Binding on the Structure and Stability of Fibrolase, a Fibrinolytic Protein from Snake Venom. Pharm Res 9, 870–877 (1992). https://doi.org/10.1023/A:1015840613799

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015840613799

Navigation