Skip to main content
Log in

Prediction of Physical Aging in Controlled-Release Coatings: The Application of the Relaxation Coupling Model to Glassy Cellulose Acetate

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The effect of physical aging on both the water transport properties and the mechanical properties of glassy cellulose acetate was investigated. Results indicate a reduction in the mechanical rate of relaxation as well as a reduction in the water permeability as the glass ages. A model which describes the low-frequency relaxation behavior of condensed, amorphous systems is used to quantitate the mechanical relaxation data. Systematic changes in key parameters from this model signify alterations in the microscopic or short-range structure as the glass physically ages. Predictions from this model correlate quite closely with the observed water permeability reductions and thus indicate that the transport properties of glassy polymers are dependent on the structure of the glass. This approach may provide further insight into the effects of nonequilibrium behavior on pharmaceutically important properties and may serve as a basis for predicting aging and permeability changes in controlled-release dosage forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. P. Skelly, G. L. Amidon, W. H. Barr, L. Z. Benet, J. E. Carter, J. R. Robinson, V. P. Shah, and A. Yacobi. In vitro and in vivo testing and correlation for oral controlled modified-release dosage forms. Pharm. Res. 7:975–982 (1990).

    Google Scholar 

  2. C. M. Sinko. An Investigation into the Relaxation Behavior of Pharmaceutical Film Coatings, Ph.D. thesis, University of Michigan, Ann Arbor, 1989.

  3. L. C. E. Struik. Physical Aging in Amorphous Polymers and Other Materials, Elsevier, New York, 1978.

    Google Scholar 

  4. D. J. Plazek, K. L. Ngai, and R. W. Rendell. An application of a unified relaxation model to the aging of polystyrene below its glass transition temperature. Polym. Eng. Sci. 24:1111–1116 (1984).

    Google Scholar 

  5. C. M. Sinko, A. F. Yee, and G. L. Amidon. The effect of physical aging on the dissolution rate of anionic polyelectrolytes. Pharm. Res. 7:648–653 (1990).

    Google Scholar 

  6. G. E. Roberts and E. F. T. White. Relaxation processes in amorphous polymers. In R. N. Haward (ed.), The Physics of Glassy Polymers, Elsevier, London, 1973, pp. 153–222.

    Google Scholar 

  7. G. P. Johari. Phenomenological aspects of glass transition and molecular motions in glasses. In K. L. Ngai and G. Wright (eds.), Relaxations in Complex Systems, Government Printing Press, Washington, DC, 1985, pp. 17–41.

    Google Scholar 

  8. L. C. E. Struik. Physical aging: Influence on the deformation behavior of amorphous polymers. In W. Brostow and R. D. Corneliussen (eds.), Failure of Plastics, Macmillan, New York, 1986, pp. 209–258.

    Google Scholar 

  9. C. R. Foltz and P. V. McKinney. Quantitative study of the annealing of poly(vinyl chloride) near the glass transition. J. Appl. Polym. Sci. 13:2235–2245 (1969).

    Google Scholar 

  10. A. H. Chan and D. R. Paul. Effect of sub-Tg annealing on gas transport in polycarbonate. J. Appl. Polym. Sci. 25:947–971 (1980).

    Google Scholar 

  11. A. F. Yee and S. A. Smith. Molecular structure effects on the dynamic mechanical spectra of polycarbonates. Macromolecules 14:54–64 (1981).

    Google Scholar 

  12. K. L. Ngai. Universality of low-frequency fluctuation, dissipation and relaxation properties of condensed matter. I. Comm.Sol. State Phys. 9:127–140 (1979).

    Google Scholar 

  13. A. K. Rajagopal, S. Teitler, and K. L. Ngai. Low-frequency relaxation in condensed matter and the evolution of entropy. J. Phys. C Sol. State Phys. 17:6611–6622 (1984).

    Google Scholar 

  14. R. W. Rendell, K. L. Ngai, G. R. Fong, and J. J. Aklonis. Volume recovery near the glass transition temperature in poly(vinyl acetate): Predictions of a coupling model. Macromolecules 20:1070–1083 (1987).

    Google Scholar 

  15. M. R. Tant and G. L. Wilkes. An overview of the nonequilibrium behavior of glasses. Polym. Eng. Sci. 21:874–895 (1981).

    Google Scholar 

  16. C. M. Sinko and G. L. Amidon. Plasticizer-induced changes in the mechanical rate of response of film coatings: An approach to quantitating plasticizer effectiveness. Int. J. Pharm. 55:247–256 (1989).

    Google Scholar 

  17. A. J. Kovacs, J. J. Aklonis, J. M. Hutchinson, and A. R. Ramos. Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J. Polym. Sci. Polym. Phys. Ed. 17:1097 (1979).

    Google Scholar 

  18. K. L. Ngai. Evidences for universal behavior of condensed matter at low frequencies/long times. In T. V. Ramakrishnan (ed.), Non-debye Relaxations in Condensed Matter, World Scientific Press, Singapore, 1985, pp. 58–191.

    Google Scholar 

  19. R. W. Rendell, K. L. Ngai, and A. F. Yee. The coupling model: A fundamental mechanism governing time dependent properties of relaxations, structural recovery and nonlinear viscoelasticity. Mat. Res. Soc. Symp. Proc. 79:311–324 (1987).

    Google Scholar 

  20. R. W. Rendell, T. K. Lee, and K. L. Ngai. New model of physical aging effects in enthalpy recovery. Polym. Eng. Sci. 24:1104–1110 (1984).

    Google Scholar 

  21. S. Sourirajan. Reverse Osmosis, Academic Press, New York, 1970.

    Google Scholar 

  22. H. K. Lonsdale, U. Merten, and R. L. Riley. Transport properties of cellulose acetate osmotic membranes. J. Appl. Polym. Sci. 9:1341–1362 (1965).

    Google Scholar 

  23. M. Scandola and G. Ceccorulli. Viscoelastic properties of cellulose derivatives: Cellulose acetate. Polymer 26:1953–1957 (1985).

    Google Scholar 

  24. P. P. Roussis. Diffusion of water vapor in cellulose acetate. 1. Differential transient sorption kinetics and equilibria. Polymer 22:768–773 (1981).

    Google Scholar 

  25. K. Ueberreiter. The solution process. In J. Crank and G. S. Park (eds.), Diffusion in Polymers, Academic Press, New York, 1968, pp. 220–258.

    Google Scholar 

  26. I. L. Hopkins and R. W. Hamming. On creep and relaxation. J. Appl. Phys. 28:906–909 (1957).

    Google Scholar 

  27. A. F. Yee, R. J. Bankert, K. L. Ngai, and R. W. Rendell. Strain and temperature accelerated relaxation in polycarbonate. J. Polym. Sci. Polym. Phys. Ed. 26:2463–2483 (1988).

    Google Scholar 

  28. C. Bindschaedler, R. Gurney, and E. Doelker. Osmotic water transport through cellulose acetate membranes produced from a latex system. J. Pharm. Sci. 76:455–460 (1987).

    Google Scholar 

  29. C. A. Kumins and T. K. Kwei. Free volume and other theories. In J. Crank and G. S. Park (eds.), Diffusion in Polymers, Academic Press, New York, 1968, pp. 107–140.

    Google Scholar 

  30. H. Fujita. Diffusion in polymer-diluent systems. Fortsch. Hochpolym.-Forsch. 3:1–47 (1961).

    Google Scholar 

  31. M. H. Cohen and D. Turnball. Molecular transport in liquids or glasses. J. Chem. Phys. 31:1164 (1959).

    Google Scholar 

  32. H.-H. Song and R.-J. Roe. Structural change accompanying volume change in amorphous polystyrene as studied by small and intermediate angle X-ray scattering. Macromolecules 20:2723–2732 (1987).

    Google Scholar 

  33. J. G. Victor and J. M. Torkelson. Photochromic and fluorescent probe studies in glassy polymer matrices. 3. Effects of physical aging and molar weight on the size distribution of local free volume. Macromolecules 21:3490–3497 (1988).

    Google Scholar 

  34. P. Sakellariou, R. C. Rowe, and E. F. T. White. An evaluation of the interaction and plasticizing efficiency of the polyethylene glycols in ethyl cellulose and hydroxpropyl methylcellulose films using the torsional braid pendulum. Int. J. Pharm. 31:55–63 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinko, C.M., Yee, A.F. & Amidon, G.L. Prediction of Physical Aging in Controlled-Release Coatings: The Application of the Relaxation Coupling Model to Glassy Cellulose Acetate. Pharm Res 8, 698–705 (1991). https://doi.org/10.1023/A:1015837614475

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015837614475

Navigation