Skip to main content
Log in

The Surface Energy of MgO: Multiscale Reconstruction from Thermal Groove Geometry

  • Published:
Interface Science

Abstract

The surface energy of MgO is determined using experimental data collected from equilibrated thermal grooves circumscribing island grains. Local equilibrium assumptions at each groove require that the Herring equations be satisfied at each data site, thereby yielding a large and overdetermined system of equations involving the surface energy γ. This inverse problem is then solved using a new technique that is statistical in nature and multiscale in implementation. The resulting discrete solution represents a statistically significant representation of the surface energy of MgO as a function of surface orientation. Comparisons to results derived from a more traditional approach, along with suggested further applications, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Saylor and G.S. Rohrer, J. Amer. Cer. Soc. 82, 1529 (1999).

    Google Scholar 

  2. C. Herring, Physical Review 1, 87 (1951).

    Google Scholar 

  3. C. Herring, in The Physics of Power Metallurgy (McGraw-Hill Book Company, New York, NY, 1951), p. 143.

    Google Scholar 

  4. D.M. Saylor, D.E. Mason, and G.S. Rohrer, J. Amer. Cer. Soc. 83, 1226 (1999).

    Google Scholar 

  5. M. McLean and B. Gale, Philosophical Magazine 20, 1033 (1969).

    Google Scholar 

  6. M. McLean and B. Gale, An analysis of surface energy anisotropy data harmonics. Philosophical Magazine A 25, 947 (1971).

    Google Scholar 

  7. B.L. Adams, S. Costiner, D. Kinderlehrer, S. Ta'asan, and W.W. Mullins, Extracting the grain-boundary character/free-energy relationship from the microstructure: pure <100> and <111> tilt boundaries, Polycrystalline Thin Films-Structure, Texture, Properties and Applications III, edited by Yalisove et al. (special issue), MRS 472, 105 (1997).

  8. B.L. Adams, S. Costiner, D. Kinderlehrer, S. Ta'asan, and W.W. Mullins, Scripta materelia 38(4), 531 (1998).

    Google Scholar 

  9. B.L. Adams, D. Kinderlehrer, I. Livshits, D.E. Mason, W.W. Mullins, G.S. Rohrer, A.D. Rollett, D. Saylor, S. Ta'asan, and C.T. Wu, Interface Science 7, 321 (1999).

    Google Scholar 

  10. Brent L. Adams, C.L. Bauer, David El-Dasher B. Casasent, D. Kinderlehrer, I. Livshits, F. Manolache, D.E. Mason, A. Morawiec, W.W. Mullins, S. Ozdemir, H. Rogan, G.S. Rohrer, A.D. Rollett, D. Saylor, S. Ta'asan, C.-T. Talukder, C.T. Wu, C.-C. Yang, and W. Yang, in Proc. 12th International Conference on Textures of Materials (ICOTOM), edited by J.A. Szpunar (Montreal, Canada, 1999), p. 9.

  11. S. Kaczmarz, Bulletin of the International Acadame Polonaise des Sciences A 355 (1937).

  12. K. Tanabe, Numerical Mathematics 17, 203 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinderlehrer, D., Ta'asan, S., Livshits, I. et al. The Surface Energy of MgO: Multiscale Reconstruction from Thermal Groove Geometry. Interface Science 10, 233–242 (2002). https://doi.org/10.1023/A:1015836532734

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015836532734

Navigation