Skip to main content

Boundary Mobility and Energy Anisotropy Effects on Microstructural Evolution During Grain Growth

Abstract

We have performed mesoscopic simulations of microstructural evolution during curvature driven grain growth in two-dimensions using anisotropic grain boundary properties obtained from atomistic simulations. Molecular dynamics simulations were employed to determine the energies and mobilities of grain boundaries as a function of boundary misorientation. The mesoscopic simulations were performed both with the Monte Carlo Potts model and the phase field model. The Monte Carlo Potts model and phase field model simulation predictions are in excellent agreement. While the atomistic simulations demonstrate strong anisotropies in both the boundary energy and mobility, both types of microstructural evolution simulations demonstrate that anisotropy in boundary mobility plays little role in the stochastic evolution of the microstructure (other than perhaps setting the overall rate of the evolution. On the other hand, anisotropy in the grain boundary energy strongly modifies both the topology of the polycrystalline microstructure the kinetic law that describes the temporal evolution of the mean grain size. The underlying reasons behind the strongly differing effects of the two types of anisotropy considered here can be understood based largely on geometric and topological arguments.

This is a preview of subscription content, access via your institution.

References

  1. D. Imos, P. Choudhary, and Z. Mannhart, Phys. Rev. B 41, 4038 (1990).

    Google Scholar 

  2. A.J. Schwartz and W.E. King, JOM 50(2), 50 (1998).

    Google Scholar 

  3. G. Palumbo, E.M. Lehockey, and P. Lin, JOM 50(2), 40 (1998).

    Google Scholar 

  4. M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni, Acta Metall. Mater. 32(5), 783 (1984).

    Google Scholar 

  5. H.J. Frost, C.V. Thompson, and D.T. Walton, Acta Metall. Mater. 38(8), 1455 (1990).

    Google Scholar 

  6. D. Weaire and J.P. Kermode, Phil. Mag. B 48(3), 245 (1983).

    Google Scholar 

  7. L.Q. Chen and Y. Wang, JOM 48(12), 13 (1996).

    Google Scholar 

  8. R. Kobayashi, J.A. Warren, and W.C. Carter, Physica D 140(1/2), 141 (200).

  9. M. Lusk, Proc. R. Soc. Lond. A 455, 677 (1999).

    Google Scholar 

  10. D. Raabe, Mat. Sci. Forum 273(2), 169 (1998).

    Google Scholar 

  11. J. Geiger, A. Roosz, and P. Barkoczy, Acta Mater. 49(4), 623 (2001).

    Google Scholar 

  12. D. Turnbull, Trans. AIME 191(8), 661 (1951).

    Google Scholar 

  13. D. Wolf, In Material Interfaces: Atomic-Level Structure and Properties, edited by D. Wolf and S. Yip (Chapman &; Hall, London, 1992).

    Google Scholar 

  14. A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials (Oxford Science Publications, Oxford, 1995).

    Google Scholar 

  15. G. Gottstein and L.S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics and Applications (CRC Press, New York, 1999).

    Google Scholar 

  16. W.T. Read and W. Shockley, Phys. Rev. B 78(3), 275 (1950).

    Google Scholar 

  17. A.P. Sutton and R.W. Balluffi, Acta Metall. 35(9), 2177 (1987).

    Google Scholar 

  18. G.J. Wang and V. Vitek, Acta Metall. 34(5), 951 (1986).

    Google Scholar 

  19. D. Wolf, Acta Metall. 37(7), 1983 (1989); 37(10), 2833 (1989); Acta Metall. Mater. 38(5), 781 (1990).

    Google Scholar 

  20. D. Wolf and K.L. Merkle, in Material Interfaces edited by D. Wolf and S. Yip (Chapman &; Hall, London, 1992), p. 87.

    Google Scholar 

  21. L.E. Murr, Interfacial Phenomena in Metals and Alloys (Addison-Wesley, London, 1975).

    Google Scholar 

  22. A. Otsuki, H. Isono, and M. Mizuno, J. de Physique 49(C-5), 563 (1988).

    Google Scholar 

  23. T. Mori, T. Ishii, M. Kajihara, and M. Kato, Phil. Mag. Lett. 8(6), 11 (1988).

    Google Scholar 

  24. G. Dhalenne, A. Gervais, and A. Revcolevschi, Phys. Stat. Sol. (a) 56(1), 267 (1979).

    Google Scholar 

  25. C. Herring, Phys. Rev. 82, 87 (1951).

    Google Scholar 

  26. W.M. Lomer, Phil. Mag. 2, 1053 (1957).

    Google Scholar 

  27. L.D. Landau, Collected Papers of L. D. Landau edited by D. Ter Haar (Gordon and Breach, New York, 1965), p. 540.

    Google Scholar 

  28. J.W. Cahn and D.W. Hoffman, Acta Metall. 22(10), 1205 (1974).

    Google Scholar 

  29. R. Omar and H. Mykura, Proc. Matsci. Res. Soc. Symp. 122, 61 (1988).

    Google Scholar 

  30. D.J. Srolovitz, A.D. Rollett, G. Gottstein, and L.S.Shvindlerman, to be published.

  31. Y. Huang and F.J. Humphreys, Acta Mater. 48(8), 2017 (2000).

    Google Scholar 

  32. K.T. Aust and J.W. Rutter, Trans. AMIE 215(2), 119 (1959).

    Google Scholar 

  33. E.M. Fridman, C.V. Kopezky, and L.S. Shvindlerman, Zeit. Metallk. 66, 533 (1975).

    Google Scholar 

  34. R.C. Sun and C.L. Bauer, Acta Metall. 18(XX), 639 (1970).

    Google Scholar 

  35. Y. Huang and F.J. Humphreys, Recrystallization and Grain Growth: Proc. First Joint Intl. Conf., edited by G. Gottstein and D.A. Molodov (Springer, Aachen, Germany, 2001), Vol. 1, p. 409.

    Google Scholar 

  36. F.C. Frank, in Growth and Perfection of Crystals, edited by R.H. Doremus, B.W. Roberts, and D. Turnbull (Wiley, New York, 1958), p. 411.

    Google Scholar 

  37. J.W. Cahn, J.E. Taylor, and C.A. Handwerker, in Sir Charles Frank, an 80th Birthday Tribute, edited by R.G. Chambers, J.E. Enderby, A. K eller, A.R. Lang, and J.W. Steeds (Hilger, New York, 1991), p. 88.

    Google Scholar 

  38. Ref. [13], p. 577.

  39. G. Gottstein and L.S. Shvindlerman, Scr.Metall. Mater. 27(11), 1515 (1992).

    Google Scholar 

  40. G.S. Grest, D.J. Srolovitz, and M.P. Anderson, Acta Metall. 37(4), 509 (1989).

    Google Scholar 

  41. A.D. Rollett, D.J. Srolovitz, and M.P. Anderson, Acta Metall. 37(4), 1227 (1989).

    Google Scholar 

  42. Y. Saito and M. Enomoto, ISIJ International 32(3), 267 (1992).

    Google Scholar 

  43. D.C. Hinz and J.A. Szpunar, Phys. Rev. B 52(14), 9900 (1995).

    Google Scholar 

  44. K. Mehnert and P. Klimanek, Comp. Mat. Sci. 7(1/2), 103 (1996).

    Google Scholar 

  45. N. Ono, K. Kimura, and T. Watanabe, Acta Mater. 47(3), 1007 (1999).

    Google Scholar 

  46. H.N. Lee, H.S. Ryoo, and S.K. Hwang, Mat. Sci. Eng. A 281(1/2), 176 (2000).

    Google Scholar 

  47. A. Kazaryan, Y. Wang, S.A. Dregia, and B.R. Patton, Phys. Rev.B 61(21), 14275 (2000).

    Google Scholar 

  48. A. Kazaryan, Y. Wang, S.A. Dregia, and B.R. Patton, Phys. Rev.B 61(21), 14275 (2000).

    Google Scholar 

  49. A. Kazaryan, Y. Wang, S.A. Dregia, and B.R. Patton, Acta Mater. 50(3), 499 (2002).

    Google Scholar 

  50. E.A. Holm, G.N. Hassold, and M.A. Miodownik, Acta Mater. 49(15), 2981 (2001).

    Google Scholar 

  51. M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, and G. Gottstein, Acta Mater. 47(14), 3901 (1999).

    Google Scholar 

  52. D.J. Srolovitz and M. Upmanyu, Ceramic Transactions 118, 89 (2000).

    Google Scholar 

  53. R.B. Potts, Proc. Camb. Phil. Soc. 48, 106 (1952).

    Google Scholar 

  54. E.A. Holm, M.A. Miodownik, and J. Cahn, in press.

  55. G.N. Hassold and E.A. Holm, Comp. Phys. 7(1), 97.

  56. L.Q. Chen and Y. Wang, Phys. Rev. B 50, 15752 (1994).

    Google Scholar 

  57. M. Upmanyu, R.W. Smith, and D.J. Srolovitz, Interface Sci. 6(1/2), 41 (1998).

    Google Scholar 

  58. M. Upmanyu, Grain Boundary Migration: Atomistic Simulation Studies, Doctoral Thesis, University of Michigan, 2000.

  59. S.P. Chen, D.J. Srolovitz, and A.F. Voter, J. Mater. Res. 4(1), 62 (1989).

    Google Scholar 

  60. R. Najafabadi, D.J. Srolovitz, and R. LeSar, J. Mater. Res. 6(5), 999 (1991).

    Google Scholar 

  61. C.S. Smith, in Metal Interfaces (ASM, Cleveland, OH, 1952), p. 65.

    Google Scholar 

  62. T. Young, Phil. Trans. R. Soc. Lond. 95, 65 (1805).

    Google Scholar 

  63. M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, and G. Gottstein, Acta Mater., in press.

  64. J.W. Cahn, Acta Metall. Mater. 39(10), 2189 (1991).

    Google Scholar 

  65. J.W.H. Tsai, S. Ling, J.C. Rodriguez, Z. Mustapha, and S.W. Chan, J. Elec. Matls. 30(4), 422 (2001).

    Google Scholar 

  66. M. Upmanyu, H. Zhang, and D.J. Srolovitz, to be published.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Upmanyu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Upmanyu, M., Hassold, G., Kazaryan, A. et al. Boundary Mobility and Energy Anisotropy Effects on Microstructural Evolution During Grain Growth. Interface Science 10, 201–216 (2002). https://doi.org/10.1023/A:1015832431826

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015832431826

  • grain growth
  • anisotropic grain boundary mobility
  • anisotropic grain boundary energy
  • Monte Carlo simulation
  • molecular dynamics simulation
  • phase field model