Interface Science

, Volume 10, Issue 2–3, pp 201–216 | Cite as

Boundary Mobility and Energy Anisotropy Effects on Microstructural Evolution During Grain Growth

  • M. Upmanyu
  • G.N. Hassold
  • A. Kazaryan
  • E.A. Holm
  • Y. Wang
  • B. Patton
  • D.J. Srolovitz
Article

Abstract

We have performed mesoscopic simulations of microstructural evolution during curvature driven grain growth in two-dimensions using anisotropic grain boundary properties obtained from atomistic simulations. Molecular dynamics simulations were employed to determine the energies and mobilities of grain boundaries as a function of boundary misorientation. The mesoscopic simulations were performed both with the Monte Carlo Potts model and the phase field model. The Monte Carlo Potts model and phase field model simulation predictions are in excellent agreement. While the atomistic simulations demonstrate strong anisotropies in both the boundary energy and mobility, both types of microstructural evolution simulations demonstrate that anisotropy in boundary mobility plays little role in the stochastic evolution of the microstructure (other than perhaps setting the overall rate of the evolution. On the other hand, anisotropy in the grain boundary energy strongly modifies both the topology of the polycrystalline microstructure the kinetic law that describes the temporal evolution of the mean grain size. The underlying reasons behind the strongly differing effects of the two types of anisotropy considered here can be understood based largely on geometric and topological arguments.

grain growth anisotropic grain boundary mobility anisotropic grain boundary energy Monte Carlo simulation molecular dynamics simulation phase field model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Imos, P. Choudhary, and Z. Mannhart, Phys. Rev. B 41, 4038 (1990).Google Scholar
  2. 2.
    A.J. Schwartz and W.E. King, JOM 50(2), 50 (1998).Google Scholar
  3. 3.
    G. Palumbo, E.M. Lehockey, and P. Lin, JOM 50(2), 40 (1998).Google Scholar
  4. 4.
    M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni, Acta Metall. Mater. 32(5), 783 (1984).Google Scholar
  5. 5.
    H.J. Frost, C.V. Thompson, and D.T. Walton, Acta Metall. Mater. 38(8), 1455 (1990).Google Scholar
  6. 6.
    D. Weaire and J.P. Kermode, Phil. Mag. B 48(3), 245 (1983).Google Scholar
  7. 7.
    L.Q. Chen and Y. Wang, JOM 48(12), 13 (1996).Google Scholar
  8. 8.
    R. Kobayashi, J.A. Warren, and W.C. Carter, Physica D 140(1/2), 141 (200).Google Scholar
  9. 9.
    M. Lusk, Proc. R. Soc. Lond. A 455, 677 (1999).Google Scholar
  10. 10.
    D. Raabe, Mat. Sci. Forum 273(2), 169 (1998).Google Scholar
  11. 11.
    J. Geiger, A. Roosz, and P. Barkoczy, Acta Mater. 49(4), 623 (2001).Google Scholar
  12. 12.
    D. Turnbull, Trans. AIME 191(8), 661 (1951).Google Scholar
  13. 13.
    D. Wolf, In Material Interfaces: Atomic-Level Structure and Properties, edited by D. Wolf and S. Yip (Chapman &; Hall, London, 1992).Google Scholar
  14. 14.
    A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials (Oxford Science Publications, Oxford, 1995).Google Scholar
  15. 15.
    G. Gottstein and L.S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics and Applications (CRC Press, New York, 1999).Google Scholar
  16. 16.
    W.T. Read and W. Shockley, Phys. Rev. B 78(3), 275 (1950).Google Scholar
  17. 17.
    A.P. Sutton and R.W. Balluffi, Acta Metall. 35(9), 2177 (1987).Google Scholar
  18. 18.
    G.J. Wang and V. Vitek, Acta Metall. 34(5), 951 (1986).Google Scholar
  19. 19.
    D. Wolf, Acta Metall. 37(7), 1983 (1989); 37(10), 2833 (1989); Acta Metall. Mater. 38(5), 781 (1990).Google Scholar
  20. 20.
    D. Wolf and K.L. Merkle, in Material Interfaces edited by D. Wolf and S. Yip (Chapman &; Hall, London, 1992), p. 87.Google Scholar
  21. 21.
    L.E. Murr, Interfacial Phenomena in Metals and Alloys (Addison-Wesley, London, 1975).Google Scholar
  22. 22.
    A. Otsuki, H. Isono, and M. Mizuno, J. de Physique 49(C-5), 563 (1988).Google Scholar
  23. 23.
    T. Mori, T. Ishii, M. Kajihara, and M. Kato, Phil. Mag. Lett. 8(6), 11 (1988).Google Scholar
  24. 24.
    G. Dhalenne, A. Gervais, and A. Revcolevschi, Phys. Stat. Sol. (a) 56(1), 267 (1979).Google Scholar
  25. 25.
    C. Herring, Phys. Rev. 82, 87 (1951).Google Scholar
  26. 26.
    W.M. Lomer, Phil. Mag. 2, 1053 (1957).Google Scholar
  27. 27.
    L.D. Landau, Collected Papers of L. D. Landau edited by D. Ter Haar (Gordon and Breach, New York, 1965), p. 540.Google Scholar
  28. 28.
    J.W. Cahn and D.W. Hoffman, Acta Metall. 22(10), 1205 (1974).Google Scholar
  29. 29.
    R. Omar and H. Mykura, Proc. Matsci. Res. Soc. Symp. 122, 61 (1988).Google Scholar
  30. 30.
    D.J. Srolovitz, A.D. Rollett, G. Gottstein, and L.S.Shvindlerman, to be published.Google Scholar
  31. 31.
    Y. Huang and F.J. Humphreys, Acta Mater. 48(8), 2017 (2000).Google Scholar
  32. 32.
    K.T. Aust and J.W. Rutter, Trans. AMIE 215(2), 119 (1959).Google Scholar
  33. 33.
    E.M. Fridman, C.V. Kopezky, and L.S. Shvindlerman, Zeit. Metallk. 66, 533 (1975).Google Scholar
  34. 34.
    R.C. Sun and C.L. Bauer, Acta Metall. 18(XX), 639 (1970).Google Scholar
  35. 35.
    Y. Huang and F.J. Humphreys, Recrystallization and Grain Growth: Proc. First Joint Intl. Conf., edited by G. Gottstein and D.A. Molodov (Springer, Aachen, Germany, 2001), Vol. 1, p. 409.Google Scholar
  36. 36.
    F.C. Frank, in Growth and Perfection of Crystals, edited by R.H. Doremus, B.W. Roberts, and D. Turnbull (Wiley, New York, 1958), p. 411.Google Scholar
  37. 37.
    J.W. Cahn, J.E. Taylor, and C.A. Handwerker, in Sir Charles Frank, an 80th Birthday Tribute, edited by R.G. Chambers, J.E. Enderby, A. K eller, A.R. Lang, and J.W. Steeds (Hilger, New York, 1991), p. 88.Google Scholar
  38. 38.
    Ref. [13], p. 577.Google Scholar
  39. 39.
    G. Gottstein and L.S. Shvindlerman, Scr.Metall. Mater. 27(11), 1515 (1992).Google Scholar
  40. 40.
    G.S. Grest, D.J. Srolovitz, and M.P. Anderson, Acta Metall. 37(4), 509 (1989).Google Scholar
  41. 41.
    A.D. Rollett, D.J. Srolovitz, and M.P. Anderson, Acta Metall. 37(4), 1227 (1989).Google Scholar
  42. 42.
    Y. Saito and M. Enomoto, ISIJ International 32(3), 267 (1992).Google Scholar
  43. 43.
    D.C. Hinz and J.A. Szpunar, Phys. Rev. B 52(14), 9900 (1995).Google Scholar
  44. 44.
    K. Mehnert and P. Klimanek, Comp. Mat. Sci. 7(1/2), 103 (1996).Google Scholar
  45. 45.
    N. Ono, K. Kimura, and T. Watanabe, Acta Mater. 47(3), 1007 (1999).Google Scholar
  46. 46.
    H.N. Lee, H.S. Ryoo, and S.K. Hwang, Mat. Sci. Eng. A 281(1/2), 176 (2000).Google Scholar
  47. 47.
    A. Kazaryan, Y. Wang, S.A. Dregia, and B.R. Patton, Phys. Rev.B 61(21), 14275 (2000).Google Scholar
  48. 48.
    A. Kazaryan, Y. Wang, S.A. Dregia, and B.R. Patton, Phys. Rev.B 61(21), 14275 (2000).Google Scholar
  49. 49.
    A. Kazaryan, Y. Wang, S.A. Dregia, and B.R. Patton, Acta Mater. 50(3), 499 (2002).Google Scholar
  50. 50.
    E.A. Holm, G.N. Hassold, and M.A. Miodownik, Acta Mater. 49(15), 2981 (2001).Google Scholar
  51. 51.
    M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, and G. Gottstein, Acta Mater. 47(14), 3901 (1999).Google Scholar
  52. 52.
    D.J. Srolovitz and M. Upmanyu, Ceramic Transactions 118, 89 (2000).Google Scholar
  53. 53.
    R.B. Potts, Proc. Camb. Phil. Soc. 48, 106 (1952).Google Scholar
  54. 54.
    E.A. Holm, M.A. Miodownik, and J. Cahn, in press.Google Scholar
  55. 55.
    G.N. Hassold and E.A. Holm, Comp. Phys. 7(1), 97.Google Scholar
  56. 56.
    L.Q. Chen and Y. Wang, Phys. Rev. B 50, 15752 (1994).Google Scholar
  57. 57.
    M. Upmanyu, R.W. Smith, and D.J. Srolovitz, Interface Sci. 6(1/2), 41 (1998).Google Scholar
  58. 58.
    M. Upmanyu, Grain Boundary Migration: Atomistic Simulation Studies, Doctoral Thesis, University of Michigan, 2000.Google Scholar
  59. 59.
    S.P. Chen, D.J. Srolovitz, and A.F. Voter, J. Mater. Res. 4(1), 62 (1989).Google Scholar
  60. 60.
    R. Najafabadi, D.J. Srolovitz, and R. LeSar, J. Mater. Res. 6(5), 999 (1991).Google Scholar
  61. 61.
    C.S. Smith, in Metal Interfaces (ASM, Cleveland, OH, 1952), p. 65.Google Scholar
  62. 62.
    T. Young, Phil. Trans. R. Soc. Lond. 95, 65 (1805).Google Scholar
  63. 63.
    M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, and G. Gottstein, Acta Mater., in press.Google Scholar
  64. 64.
    J.W. Cahn, Acta Metall. Mater. 39(10), 2189 (1991).Google Scholar
  65. 65.
    J.W.H. Tsai, S. Ling, J.C. Rodriguez, Z. Mustapha, and S.W. Chan, J. Elec. Matls. 30(4), 422 (2001).Google Scholar
  66. 66.
    M. Upmanyu, H. Zhang, and D.J. Srolovitz, to be published.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M. Upmanyu
    • 1
  • G.N. Hassold
    • 2
  • A. Kazaryan
    • 3
    • 4
  • E.A. Holm
    • 5
  • Y. Wang
    • 4
  • B. Patton
    • 3
  • D.J. Srolovitz
    • 1
  1. 1.Princeton Materials Institute and Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrinceton, New JerseyUSA;
  2. 2.Department of Science and MathematicsKettering UniversityFlintUSA
  3. 3.Department of PhysicsOhio State UniversityColumbusUSA;
  4. 4.Department of Materials Science and EngineeringOhio State UniversityColumbusUSA
  5. 5.Materials and Process Modeling DepartmentSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations