Skip to main content
Log in

Biosensor Development

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

This article reviews the recent biosensor developments for medical applications, focusing on the various biological recognition elements used in biosensors and the systems transduction mechanisms. Available instruments utilizing biosensor technology are also examined from a commercial perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCE

  1. J. S. Schultz. Biosensors. Sci. Am. (2) (Aug.): 265, 64–69 (1991).

  2. A. Athani and U. V. Banakar. The development and potential uses of biosensors. BioPharm 3(l):23–30 (1990).

    Google Scholar 

  3. F. Scheller et al. Research and development of biosensors. Analyst 114:653–662 (1989).

    Google Scholar 

  4. A. H. Free and H. M. Free. A simple test for urine bilirubin. Gastroenterologia 24:414–416 (1953).

    Google Scholar 

  5. L. C. Clark and C. Lyons. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N.Y. Acad. Sci. 102:29–45 (1962).

    Google Scholar 

  6. K. D. Mayer and B. J. Starkey. Simpler flame photometric determination of erythrocyte sodium and potassium: The reference range for apparently healthy adults. Clin. Chem. 23:275–278 (1977).

    Google Scholar 

  7. G. Eisenman. Glass Electrodes for Hydrogen and Other Ions, Marcel Dekker, New York 1967.

    Google Scholar 

  8. S. Lal and G. D. Christian. Response characteristics of the Orion potassium ion selective electrode. Anal. Lett. 3:11–15 (1970).

    Google Scholar 

  9. M. S. Frant and J. W. Ross Jr. Potassium ion specific electrode with high selectivity for potassium over sodium. Science 167:987–988 (1970).

    Google Scholar 

  10. L. A. Pioda, V. Stankova, and W. Simon. Highly selective potassium ion responsive liquid-membrane electrode. Anal. Lett. 2:665–674 (1969).

    Google Scholar 

  11. R. S. Cobbold. Transducers for Biomedical Measurements: Principles and Applications. Wiley, New York, 1974, pp. 322–403.

    Google Scholar 

  12. B. A. McKinley, J. Saffle, W. S. Jordan, J. Janata, S. D. Moss, and D. R. Westenskow. In vivo continuous monitoring of K+ in animals using ISFET probes. Med. Inst. 14:93–97 (1980).

    Google Scholar 

  13. B. Budesinsky and B. Menclova. Photometric determination of potassium with dinitrohydroxyazo. Chemist-Analyst 56:30–31 (1967).

    Google Scholar 

  14. J. N. Roe, F. C. Szoka, and A. S. Verkman. Colorimetric detection of alkali metals by ion-pair extraction. Appl. Spectrosc. 43:656–661 (1989).

    Google Scholar 

  15. A. Sanz-Medel, D. Blanco Gomis, and J. R. Garcia Alvarez. Ion-pair extraction and fluorometric determination of potassium with 18-crown-6 and eosin. Talanta 28:425–430 (1981).

    Google Scholar 

  16. C. L. Bashford, G. M. Alder, M. A. Gray, K. J. Micklem, C. C. Taylor, P. J. Turek, and C. A. Pasternak. Oxonol dyes as monitors of membrane potential. J. Cell. Physiol. 123:326–336 (1985).

    Google Scholar 

  17. S. Borman. Optical and piezoelectric biosensors. Anal. Chem. 59:1161A–1164A (1987).

    Google Scholar 

  18. B. P. H. Schaffar and O. S. Wolfbeis. Effect of Langmuir-Blodgett layer composition on the response of ion-selective optrodes for potassium, based on the fluorometric measurement of membrane potential. Analyst 113:693–697 (1988).

    Google Scholar 

  19. J. F. Alder, D. C. Ashworth, R. Narayanaswamy, R. E. Moss, and I. O. Sutherland. An optical potassium ion sensor. Analyst 112:1191–1192 (1987).

    Google Scholar 

  20. J. N. Roe, F. C. Szoka, and A. S. Verkman. A fiberoptic sensor for potassium detection using fluorescence energy transfer. Analyst 115:353–358 (1990).

    Google Scholar 

  21. E. Prusak-Sochaczewski, J. Luong, and G. Guilbault. Development of a piezoelectric immunosensor for the detection of Salmonella typhimurium. Enzyme Microbial Technol. 12(3):173–177 (1990).

    Google Scholar 

  22. E. Prusak-Sochaczewski and J. Luong. Detection of human transferrin by the piezoelectric crystal. Anal. Lett. 23(2):183–194 (1990).

    Google Scholar 

  23. D. Monroe. Potentiometric immunoassay. Am. Biotechnol. Lab. Nov.–Dec.:28–40 (1986).

  24. M. S. Abdel-Latif, A. Suleiman, G. G. Guilbault, B. A. A. Dremel, and R. D. Schmid. Fiber optic sensors: Recent developments. Anal. Lett. 23(3):375–399 (1990).

    Google Scholar 

  25. M. A. Arnold. Fiber optic biosensing probes for biomedically important compounds. SPIE 906:128–133 (1988).

    Google Scholar 

  26. J. S. Schultz, S. Mansouri, and I. J. Goldstein. Affinity sensor: A new technique for developing implantable sensors for glucose and other metabolites. Diabetes Care 5(3):245–253 (1982).

    Google Scholar 

  27. T. Vo-Dinh, T. Nolan, Y. F. Cheng, M. J. Sepaniak, and J. P. Alarie. Phase-resolved fiber-optics fluoroimmunosensor. Appl. Spectrosc. 44:128–132 (1990).

    Google Scholar 

  28. J. T. Ives, J. N. Lin, and J. D. Andrade. Fiber-optic fluorescence immunosensors. Am. Biotechnol. Lab. March: 10–18 (1989).

  29. G. Kampfrath and R. Hintsche. Plasma-polymerized thin films for enzyme immobilization in biosensors. Anal. Lett. 22(11–12): 2423–2431 (1989).

    Google Scholar 

  30. R. Hintsche, G. Neumann, I. Dransfeld, G. Kampfrath, B. Hoffmann, and F. Scheller. Polyurethane enzyme membranes for chip biosensors. Anal. Lett. 22(9):2175–2190 (1989).

    Google Scholar 

  31. C. Galiatsatos, K. Haljizadeh, J. E. Mark, and W. R. Heineman. A new method for enzyme membrane preparation based on polyurethane technology: Electrode modification for sensor development. Biosensors 4(6):393–402 (1989).

    Google Scholar 

  32. J. Anzai, S. Lee, and T. Osa. Enzyme sensors based on an ion-sensitive field effect transistor coated with Langmuir-Blodgett membranes. Chem. Pharm. Bull. 37(12):3320–3322 (1989).

    Google Scholar 

  33. B. H. Schneider, M. R. S. Hill, and O. J. Prohaska. Microelectrode probes for biomedical applications. Am. Biotechnol. Lab. Feb.: 17–23 (1990).

  34. J. E. Frew and M. J. Green. Amperometric biosensors. Anal. Proc. (London) 26(10):344–352 (1989).

    Google Scholar 

  35. D. Monroe. Novel implantable glucose sensors. Am. Clin. Lab. 8(12):8–16 (1989).

    Google Scholar 

  36. V. L. Davidson. Quinoproteins: A new class of enzymes with potential use as biosensors. Am. Biotechnol. Lab. Feb.:32–34 (1990).

  37. M. Y. K. Ho and G. A. Rechnitz. Highly stable biosensor using an artificial enzyme. Anal. Chem. 59:536–537 (1987).

    Google Scholar 

  38. S. J. Lasky and D. A. Buttry. Development of a real-time glucose biosensor by enzyme immobilization on the quartz crystal microbalance. Am. Biotechnol. Lab. Feb.:8–16 (1990).

  39. M. J. Muehlbauer, E. J. Guilbeau, and B. C. Towe. Model for a thermoelectric enzyme glucose sensor. Anal. Chem. 61:77–83 (1989).

    Google Scholar 

  40. S. F. Hallowell and G. A. Rechnitz. Enzyme amplified receptor assay (ERA): A novel approach to drug detection. Anal. Lett. 20(12):1929–1949 (1987).

    Google Scholar 

  41. T. J. Kulp, I. Camins, S. M. Angel, C. Munkholm, and D. R. Walt. Polymer immobilized enzyme optrodes for the detection of penicillin. Anal. Chem. 59:2849–2853 (1987).

    Google Scholar 

  42. S. Luo and D. R. Walt. Avidin-biotin coupling as a general method for preparing enzyme-based fiber-optic sensors. Anal. Chem. 61:1069 (1989).

    Google Scholar 

  43. B. S. Walter, T. J. Nielsen, and M. A. Arnold. Fiber-optic biosensor for ethanol based on an internal enzyme concept. Talanta 35:151–155 (1988).

    Google Scholar 

  44. W. Trettnak and O. S. Wolfbeis. A fiberoptic cholesterol biosensor with an oxygen optrode as the transducer. Anal. Biochem. 184(1): 124–127 (1989).

    Google Scholar 

  45. L. J. Blum, S. M. Gautier, and P. R. Coulet. Highly stable bioluminescence-based fiber-optic sensor using immobilized enzymes from Vibrio harveyi. Anal. Lett. 22(10):2211–2222 (1989).

    Google Scholar 

  46. S. A. Glazier and G. A. Rechnitz. Construction and characterization of beet stem based biosensors for oxalate. Anal. Lett. 22(15):2929–2948 (1989).

    Google Scholar 

  47. I. Karube, K. Hiramoto, M. Kawarai, and K. Sode. Biosensors for toxic compounds using immobilized animal cell membrane. Maku 14(5):311–318 (1989).

    Google Scholar 

  48. Y. Sato, K. Chikyu, and K. Kobayakawa. Amino acid and urea sensors using parsley leaves as catalytic material. Chem. Lett. 7:1305–1308 (1989).

    Google Scholar 

  49. G. A. Rechnitz. Biosensors. Chem. Eng. News Sept. 5:24–36 (1988).

  50. R. M. Buch and G. A. Rechnitz. Intact chemoreceptor-based biosensors: extreme sensitivity to some excitatory amino acids. Anal. Lett. 22(13–14):2685–2702 (1989).

    Google Scholar 

  51. M. Gotoh, E. Tamiya, M. Momoi, Y. Kagawa, and I. Karube. Acetylcholine sensor based on ion sensitive field effect transistors and acetylcholine receptors. Anal. Lett. 20:857–870 (1987).

    Google Scholar 

  52. J. L. Marty, K. Sode, and I. Karube. Amperometric determination of choline and acetylcholine with enzymes immobilized in a photocross-linkable polymer. Anal. Chem. Acta 228:49–53 (1990).

    Google Scholar 

  53. E. Ohashi, E. Tamiya, and I. Karube. A new enzymatic receptor to be used in biosensors. J. Membr. Sci. 49:95–102 (1990).

    Google Scholar 

  54. M. E. Collison and M. E. Meyerhoff. Chemical sensors for bedside monitoring of critically ill patients. Anal. Chem. 62:425A–437A (1990).

    Google Scholar 

  55. C. Starrs. Technology rises to the ocassion: The growth of home testing. Clin. Lab. Sci. 2:330–336 (1989).

    Google Scholar 

  56. B. Walter. Dry reagent chemistries. Anal. Chem. 55:498A–514A (1983).

    Google Scholar 

  57. J. Hanlin. Thin films: New medical detectives. Photon. Spectra Feb.:113–118 (1988).

  58. S. M. Miller and P. Etnyre-Zacher. Biosensors and diagnostic testing: Enzyme electrodes. Clin. Lab. Sci. 2(3):169–173 (1989).

    Google Scholar 

  59. The U.S. Market for Smart Sensors. Frost and Sullivan, Inc., A-2641, 1989.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roe, J.N. Biosensor Development. Pharm Res 9, 835–844 (1992). https://doi.org/10.1023/A:1015828311073

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015828311073

Navigation