Skip to main content
Log in

Comparison of the effect of elevated CO2 on an invasive species (Centaurea solstitialis) in monoculture and community settings

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The ongoing increase in atmospheric CO2 concentration ([CO2]) is likely to change the species composition of plant communities. To investigate whether growth of a highly invasive plant species, Centaurea solstitialis (yellow starthistle), was affected by elevated [CO2], and whether the success of this species would increase under CO2 enrichment, I grew the species in serpentine soil microcosms, both as a monoculture and as a component of a grassland community. Centaurea grown in monoculture responded strongly to [CO2] enrichment of 350 μmol mol−1, increasing aboveground biomass production by 70%, inflorescence production by 74%, and midday photosynthesis by an average of 132%. When grown in competition with common serpentine grassland species, Centaurea responded to CO2 enrichment with similar but nonsignificant increases (+69% aboveground biomass, +71% inflorescence production), while total aboveground biomass of the polyculture increased by 28%. Centaurea's positive CO2 response in monoculture and parallel (but non-significant) response in polyculture provoke questions about possible consequences of increasing CO2 for more typical California grasslands, where the invader already causes major problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arp, W.J., Drake, B.G., Pockman, W.T., Curtis, P.S. & Whigham, D. F. 1993. Interactions between C3 and C4 salt-marsh plant species during 4 years of exposure to elevated atmospheric CO2. Vegetatio 104: 133-143.

    Google Scholar 

  • Chapin, F. S., III, Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J. & Laundre, J. A. 1995. Responses of arctic tundra to experimental and observed changes in climate. Ecology 76: 694-711.

    Google Scholar 

  • Chiariello, N. R. & Field, C. B. 1996. Annual grassland responses to elevated CO2 in long-term community microcosms. pp. 139-157. In: C. Körner & F. A. Bazzaz (eds), Carbon dioxide, populations, and communities. Academic Press, San Diego.

    Google Scholar 

  • Cordy, D.R. 1954. Nigropallidal encephalomalacia in horses associated with ingestion of yellow starthistle. J. Neuropathol. Exp. Neurol. 13: 330-342.

    Google Scholar 

  • Dukes, J. S. 2000. Will the increasing atmospheric CO2 concentration affect the success of invasive species? pp. 95-113. In: H. A. Mooney & R. J. Hobbs (eds), Invasive species in a changing world. Island Press, Washington.

    Google Scholar 

  • Dukes, J. S. 2001. Biodiversity and invasibility in grassland microcosms. Oecologia 126: 563-568.

    Google Scholar 

  • Dukes, J. S. & Mooney, H. A. 1999. Does global change increase the success of biological invaders? Trends Ecol. Evol. 14: 135-139.

    Google Scholar 

  • Field, C. B., Chapin, F. S., III, Chiariello, N. R., Holland, E. A. & Mooney, H. A. 1996. The Jasper Ridge CO2 experiment: Design and motivation. pp. 121-145. In: G. W. Koch & H.A. Mooney (eds), Ecosystem responses to elevated CO2. Academic Press, London.

    Google Scholar 

  • Field, C. B., Lund, C. P., Chiariello, N. R. & Mortimer, B. E. 1997. CO2 effects on the water budget of grassland microcosm communities. Global Change Biol. 3: 197-206.

    Google Scholar 

  • Fredeen, A. L., Randerson, J. T., Holbrook, N. M. & Field, C. B. 1997. Elevated atmospheric CO2 increases water availability in a water-limited grassland ecosystem. J. Am. Water Res. Assoc. 33: 1033-1039.

    Google Scholar 

  • Frenkel, R. E. 1970. Ruderal vegetation along some California roadsides. University of California Press, Berkeley, California.

    Google Scholar 

  • Harte, J. & Shaw, R. 1995. Shifting dominance within a montane vegetation community: Results of a climate-warming experiment. Science 267: 876-880.

    Google Scholar 

  • Hickman, J. C. (ed.). 1993. The Jepson manual: higher plants of California. University of California Press, Berkeley.

    Google Scholar 

  • Hobbs, R. J., Gulmon, S. L., Hobbs, V. J. & Mooney, H. A. 1988. Effects of fertilizer addition and subsequent gopher disturbance on a serpentine annual grassland community. Oecologia 75: 291-295.

    Google Scholar 

  • Hobbs, R. J. & Mooney, H. A. 1991. Effects of rainfall variability and gopher disturbance on serpentine annual grassland dynamics. Ecology 72: 59-68.

    Google Scholar 

  • Hobbs, R. J. & Mooney, H. A. 1995. Spatial and temporal variability in California annual grassland: results from a long-term study. J. Veg. Sci. 6: 43-56.

    Google Scholar 

  • Huenneke, L. F., Hamburg, S. P., Koide, R., Mooney, H. A. & Vitousek, P. M. 1990. Effects of soil resources on plant invasion and community structure in Californian [USA] serpentine grassland. Ecology 71: 478-491.

    Google Scholar 

  • Hungate, B. A., Chapin, F. S., III, Zhong, H., Holland, E. A. & Field, C. B. 1997. Stimulation of grassland nitrogen cycling under carbon-dioxide enrichment. Oecologia 109: 149-153.

    Google Scholar 

  • Huxman, T. E., Hamerlynck, E. P., Jordan, D. N., Salsman, K. J. & Smith, S. D. 1998. The effects of parental CO2 environment on seed quality and subsequent seedling performance in Bromus rubens. Oecologia 114: 202-208.

    Google Scholar 

  • Jackson, R. B., Sala, O. E., Field, C. B. & Mooney, H. A. 1994. CO2 alters water use, carbon gain, and yield for the dominant species in a natural grassland. Oecologia 98: 257-262.

    Google Scholar 

  • Kruckeberg, A. R. 1984. California serpentines: flora, vegetation, geology, soils, and management problems. University of California Press, Berkeley, California.

    Google Scholar 

  • Leadley, P. W., Niklaus, P. A., Stocker, R. & Körner, C. 1999. A field study of the effects of elevated CO2 on plant biomass and community structure in a calcareous grassland. Oecologia 118: 39-49.

    Google Scholar 

  • Maddox, D. M. 1981. Introduction, phenology, and density of yellow starthistle in coastal, intercoastal, and Central Valley situations in California. U.S. Department of Agriculture, Agricultural Research Service, Report ARR-W-20.

  • Maddox, D. M. & Mayfield, A. 1985. Yellow starthistle infestations are on the increase. California Agric. 39: 10-12.

    Google Scholar 

  • Maddox, D. M., Mayfield, A. & Poritz, N.H. 1985. Distribution of yellow starthistle (Centaurea solstitialis) and Russian knapweed (Centaurea repens). Weed Sci. 33: 315-327.

    Google Scholar 

  • Murphy, D. D. & Ehrlich, P. R. 1989. Conservation biology of California's remnant native grasslands. pp. 201-211. In: L. F. Huenneke & H. A. Mooney (eds), Grassland structure and function: California annual grassland. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Owensby, C. E., Ham, J. M., Knapp, A. K. & Auen, L. M. 1999. Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Global Change Biol. 5: 497-506.

    Google Scholar 

  • Pitcairn, M. J., O'Connell, R. A. & Gendron, J. M. 1998. Yellow starthistle: survey of statewide distribution. pp. 64-66. In: D. M. Woods (ed.), Biological control program annual summary, 1997. California Department of Food and Agriculture, Plant Health and Pest Prevention Services, Sacramento, California.

    Google Scholar 

  • Roché, B. F., Jr. 1992. Achene dispersal in yellow starthistle (Centaurea solstitialis L.). Northwest Sci. 66: 62-65.

    Google Scholar 

  • Sasek, T. W. & Strain, B. R. 1988. Effects of carbon dioxide enrichment on the growth and morphology of kudzu (Pueraria lobata). Weed Sci. 36: 28-36.

    Google Scholar 

  • Smith, S. D., Huxman, T. E., Zitzer, S. F., Charlet, T. N., Housman, D. C., Coleman, J. S., Fenstermaker, L. K., Seemann, J. R. & Nowak, R. S. 2000. Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408: 79-82.

    Google Scholar 

  • Smith, S. D., Strain, B. R. & Sharkey, T. D. 1987. Effects of carbon dioxide enrichment on four Great Basin [USA] grasses. Funct. Ecol. 1: 139-144.

    Google Scholar 

  • Weiss, S. B. 2000. Cars, cows, and checkerspot butterflies: nitrogen deposition and management of nutrient poor grasslands for a threatened species. Cons. Biol. 13: 1476-1486.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dukes, J.S. Comparison of the effect of elevated CO2 on an invasive species (Centaurea solstitialis) in monoculture and community settings. Plant Ecology 160, 225–234 (2002). https://doi.org/10.1023/A:1015813919850

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015813919850

Navigation