Skip to main content

Terpenes and the Lipid–Protein–Partitioning Theory of Skin Penetration Enhancement

Abstract

A series of terpenes has been assessed as skin penetration enhancers towards the model polar penetrant 5-fluorouracil (5-FU). Cyclic terpenes were selected from the chemical classes of hydrocarbons (e.g., α-pinene), alcohols (e.g., α-terpineol), ketones (e.g., carvone), and oxides (e.g., 1,8-cineole, ascaridole). Permeation experiments were performed on excised human epidermal membranes and the terpenes varied in their activities; α-pinene only doubled the permeability coefficient of aqueous 5-FU, whereas 1,8-cineole caused a near 95-fold increase. Essential oils, e.g., chenopodium (70% ascaridole), were less effective than the corresponding isolated terpenes. 5-FU is less soluble in the terpenes than in water, and the terpenes did not exert their action by increasing partitioning of the drug into the membranes as illustrated by stratum corneum:water partitioning studies. The penetration enhancers increased drug diffusivity through the membranes, an effect which correlated empirically with the enhancer activities. The principal mode of action of these accelerants may be described by the lipid–protein–partitioning theory; the terpenes interacted with intercellular stratum corneum lipids to increase diffusivity, and the accelerant effects were not due to partitioning phenomena. Keratin interaction was assumed negligible.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. D. Southwell and B. W. Barry. J. Invest. Dermatol. 80:507–514 (1983).

    Google Scholar 

  2. B. W. Barry, D. Southwell, and R. Woodford. J. Invest. Dermatol. 82:49–52 (1984).

    Google Scholar 

  3. D. Southwell and B. W. Barry. Int. J. Pharm. 22:291–298 (1984).

    Google Scholar 

  4. B. J. Aungst, N. J. Rogers, and E. Shefter. Int. J. Pharm. 33:225–234 (1986).

    Google Scholar 

  5. M. Goodman and B. W. Barry. In R. L. Bronaugh and H. I. Maibach (eds.), Percutaneous Absorption, 2nd ed., Marcel Dekker, New York and Basel, 1989, Chap. 33.

    Google Scholar 

  6. H. Okamoto, M. Hashida, and H. Sezaki. J. Pharm. Sci. 77:418–424 (1988).

    Google Scholar 

  7. J. Hadgraft. Pharm. Int. 5:252–254 (1984).

    Google Scholar 

  8. B. W. Barry. Dermatological Formulations: Percutaneous Absorption, Marcell Dekker, New York and Basel, 1983.

    Google Scholar 

  9. R. Woodford and B. W. Barry. J. Toxicol. Cut. Ocular Toxicol. 5:165–175 (1986).

    Google Scholar 

  10. D. L. J. Opdyke. Fd. Cosmet. Toxicol. 12–14:Supplements (1974–1976).

  11. A. R. Pinder. The Chemistry of the Terpenes, Chapman and Hall, London, 1960.

    Google Scholar 

  12. J. R. Bond and B. W. Barry. J. Invest. Dermatol. 90:810–813 (1988).

    Google Scholar 

  13. S. M. Harrison, B. W. Barry, and P. H. Dugard. J. Pharm. Pharmacol. 36:261–262 (1984).

    Google Scholar 

  14. A. M. Kligman and E. Christophers. Arch. Dermatol. 88:70–73 (1963).

    Google Scholar 

  15. S. A. Akhter, S. L. Bennett, I. L. Waller, and B. W. Barry. Int. J. Pharm. 21:17–26 (1984).

    Google Scholar 

  16. M. Goodman and B. W. Barry. J. Invest. Dermatol. 91:323–327 (1988).

    Google Scholar 

  17. J. L. Cohen and R. B. Stoughton. J. Invest. Dermatol. 62:507–509 (1974).

    Google Scholar 

  18. M. Goodman. Ph.D. thesis, University of Bradford, Bradford, 1986.

  19. C. Hansch and A. Leo. Substituent Constants for Correlation Analysis in Chemistry and Biology, John Wiley and Sons, New York, 1979.

    Google Scholar 

  20. J. R. Bond and B. W. Barry. J. Invest. Dermatol. 90:486–489 (1988).

    Google Scholar 

  21. B. W. Barry. J. Control. Release 6:85–97 (1987).

    Google Scholar 

  22. J. A. Zupan. Eur. Patent Publ. No. 0069385 (1983).

  23. J. R. Bond and B. W. Barry. Int. J. Pharm. 41:91–93 (1988).

    Google Scholar 

  24. R. H. Guy, E. M. Carlstrom, D. A. W. Bucks, R. S. Hinz, and H. I. Maibach. J. Pharm. Sci. 75:968–972 (1986).

    Google Scholar 

  25. W. J. Lambert, W. I. Higuchi, K. Knutson, and S. L. Krill. J. Pharm. Sci. 78:925–928 (1989).

    Google Scholar 

  26. E. S. Nuwayser, M. H. Gay, D. J. De Roo, and P. D. Baskovich. Proc. Int. Symp. Control. Rel. Bioact. Mater. 15:213–214 (1988).

    Google Scholar 

  27. T. Nagai, Q. D. Yi, R. I. Higuchi, Y. Akitoshi, and K. Takayama. Proc. Int. Symp. Control. Rel. Bioact. Mater. 15:154–155 (1988).

    Google Scholar 

  28. J. Yamahara, H. Kashiwa, K. Kishi, and H. Fujimura. Chem. Pharm. Bull. 37:855–856 (1989).

    Google Scholar 

  29. T. Nagai, H. Okabe, A. Ogura, and K. Takayama. Proc. Int. Symp. Control. Rel. Bioact. Mater. 16:181–182 (1989).

    Google Scholar 

  30. H. Okabe, K. Takayama, A. Ogura, and T. Nagai. Drug Design Deliv. 4:313–321 (1989).

    Google Scholar 

  31. B. W. Barry. Int. J. Cosmet. Sci. 10:281–293 (1988).

    Google Scholar 

  32. R. H. Guy and J. Hadgraft. Pharm. Res. 5:753–758 (1988).

    Google Scholar 

  33. D. Chow, S. Tenjarla, M. Tsui, S. Asici, and D. Hsieh. Proc. Int. Symp. Control. Rel. Bioact. Mater. 15:85–86 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Williams, A.C., Barry, B.W. Terpenes and the Lipid–Protein–Partitioning Theory of Skin Penetration Enhancement. Pharm Res 8, 17–24 (1991). https://doi.org/10.1023/A:1015813803205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015813803205

  • percutaneous absorption
  • skin penetration enhancers
  • terpenes
  • lipid–protein–partitioning theory