Cellulose

, Volume 9, Issue 1, pp 41–53 | Cite as

The cellulose solvent system N,N-dimethylacetamide/lithium chloride revisited: the effect of water on physicochemical properties and chemical stability

  • Antje Potthast
  • Thomas Rosenau
  • Richard Buchner
  • Thomas Röder
  • Gerald Ebner
  • Hartmut Bruglachner
  • Herbert Sixta
  • Paul Kosma

Abstract

The water content in the binary systemN,N-dimethylacetamide/lithium chloride (DMAc/LiCl), acommon cellulose solvent, has been proven to be a crucial parameter. A quickdetermination of water content in DMAc based on the solvatochromism of aUV-active betain probe dye has been developed and validated. An analogousmethod, based on the solvatochromic fluorescence shift ofZelinskij's dye, which strongly depends on thesolventpolarity, was established for water determination in DMAc containing LiCl.Precise physicochemical data of the system DMAc/LiCl, such as density,viscosity, and conductivity, have been obtained. The limiting solubility forLiCl in absolute DMAc is 8.46 wt%. As shown by lightscattering experiments, water in DMAc/LiCl induces aggregation upon standingforlonger periods of time, which is even more prominent for diluted solutions andthose having a poor state of dissolution.

Cellulose solution DMAc/LiCl Dynamic light scattering Hydrolysis Solubility Solvatochromism Water content 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aminabhavi T.M. and Gopalakrishna B. 1995. Density, viscosity, refractive index, and speed of sound in aqueous mixtures of N,N-dimethylformamide, dimethyl sulfoxide, N,N-dimethylacetamide, acetonitrile,1,4-dioxane,tetrahydrofurane,2-methoxyethanol, and 2-ethoxyethanol at 298.15 K. J. Chem. Eng. Data 40: 856.Google Scholar
  2. Barthel J., Wachter R. and Gores J.J. 1979. Temperature Dependence of Conductance of Electrolytes in Nonaqueous Solvents. In: Conway B.E. (ed.), Modern Aspects of Electrochemistry. Vol. 13. Plenum, New York.Google Scholar
  3. Barthel J., Krienke H. and Kunz W. 1998. Physical Chemistry of Electrolyte Solutions. Steinkopff, Darmstadt.Google Scholar
  4. Dawsey T.R. and McCormick C.L. 1990. The Lithium Chloride/Dimethylacetamide Solvent for Cellulose: A Literature Review. J. Macromol. Sci. – Rev. Macromol. Chem. Phys. C30: 405–440.Google Scholar
  5. El-Kafrawy A. 1982. Investigation of the Cellulose/LiCl/Dimethylacetamide and Cellulose/LiCl/N-Methyl-2-pyrrolidinone Solutions by 13C NMR Spectroscopy. J. Appl. Polymer Sci. 27: 2435–2443.Google Scholar
  6. Kawaizumi F., Ohno M. and Miyahara Y. 1997. Ultrasonic and volumetric investigation of aqueous solutions of amides. Bull. Chem. Soc. Jpn. 50: 2229.Google Scholar
  7. Langhals H. 1982. Polarität binärer Flüssigkeitsgemische. Angew. Chem. 94: 739–749.Google Scholar
  8. Langhals H. 1987. The polarity of solutions of electrolytes. Tetrahedron 43: 1771–1774.Google Scholar
  9. Langhals H. 1990. A simple, quick, and precise procedure for the determination of water in organic solvents. Anal. Lett. 23: 2243–2258.Google Scholar
  10. Lehner D., Lindner H. and Glatter O. 2000. Determination of the translational and rotational diffusion coefficient of rodlike particles using depolarized dynamic light scattering. Langmuir 16: 1689–1695.Google Scholar
  11. Lid D.R. (ed.) 1994. Handbook of Chemistry and Physics. 74th edn. CRC press, Boca Raton, FL, 8/43-45.Google Scholar
  12. Morgenstern B. and Kammer H.W. 1996. Solvation in Cellulose-LiCl-DMAc Solutions. TRIP 4: 87–92.Google Scholar
  13. Paul R.C., Banait J.S. and Narula S.P. 1975. Physicochemical studies in non-aqueous solvents. X. Conductance and solvation studies of 1:1 electrolytes in N,N-dimethylacetamide. Aust. J. Chem. 28: 321.Google Scholar
  14. Pistoi G. and Scrosati B. 1967. Non-aqueous solutions. II. Conductances and solubilities of several halides in N,N-dimethylacetamide at 25 °C. Ric. Sci. 37: 1173.Google Scholar
  15. Rao C.P., Balaram P. and Rao C.N.R. 1980. 13C Nuclear Magnetic Resonance Studies of the Binding of Alkali and Alkaline Earth Metal Salts to Amides. J. Chem. Soc. Faraday Trans. I 76: 1008–1013. 52Google Scholar
  16. Reichhardt C. 1988. Solvents and Solvent Effects in Organic Chemistry. 2nd edn. Verlag Chemie, Weinheim.Google Scholar
  17. Rosenau T., Potthast A., Hofinger A. and Kosma P. 2000. Hydrolytic Processes and Condensation Reactions in the Cellulose Solvent System N,N-Dimethylacetamide/Lithium Chloride. Part. I. Holzforschung 55: 661–666.Google Scholar
  18. Schelosky N., Roeder T. and Baldinger T. 1999. Molmassenverteilung cellulosischer Produkte mittels röβenausschluβchromatographie in DMAc/LiCl. Das Papier 53: 728–738.Google Scholar
  19. Schnablegger H. and Glatter O. 1991. Optical sizing of small colloidal particles: an optimized regularization technique. Applied Optics 30: 4889–4896.Google Scholar
  20. Shoshina I.A., Borodulina E.M., Gulyaeva L.I., Filanovskii B.K., Grilikhes M.S. and Rotinyan A.L. 1980. Electric conductivity of solutions of lithium chloride in dimethylacetamide and their mixtures with water. Sov. Electrochem. 16: 1031.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Antje Potthast
    • 1
  • Thomas Rosenau
    • 1
  • Richard Buchner
    • 1
  • Thomas Röder
    • 1
  • Gerald Ebner
    • 1
  • Hartmut Bruglachner
    • 1
  • Herbert Sixta
    • 2
  • Paul Kosma
    • 3
  1. 1.University of Agricultural Sciences Vienna, Christian-Doppler-LaboratoryViennaAustria
  2. 2.Lenzing AG, Research and DevelopmentLenzingAustria
  3. 3.University of Agricultural Sciences Vienna, Christian-Doppler-LaboratoryViennaAustria

Personalised recommendations