Skip to main content
Log in

Critical Behavior of the Electrical Conductivity of Concentrated Electrolytes: Ethylammonium Nitrate in n-Octanol Binary Mixture

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The electrical conductivity κ of highly concentrated binary ionic mixtures of ethylammonium nitrate in n-octanol at a critical salt mole fraction x = 0.766 and at an off-critical one x = 0.908 was measured over an extended temperature range above the critical consolute point. Far from the critical temperature T c, the conductivity is accurately described by the Vogel–Fulcher–Tammann (VFT) law. However, in a temperature range ΔT = (TT c) ≤ 3 K, the conductivity exhibits a monotonous deviation from the VFT behavior. This anomaly is finite at T c and, for the critical mixture, its amplitude is ≅ 0.23% of κ (T c). The asymptotic behavior of the conductivity anomaly is described by a power law τ(1 − α), with τ = (TT c)/T c, the reduced temperature, and α, the critical exponent of the specific heat anomaly at constant pressure. This critical anomaly is similar to the one observed in other highly concentrated critical electrolytes. The degree of dissociation of the salt for the critical mixture, αdiss ≅ 0.78 ± 0.04, is estimated from the value of the Walden product computed at T c, and accounts for the effective free ion concentration in the reduced critical coordinates of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. M. H. Levelt Sengers and J. A. Given, Mol. Phys. 80, 899(1993).

    Google Scholar 

  2. H. Weingärtner and W. Schröer, Advan. Chem. Phys. 116, 1(2001) and references cited therein.

    Google Scholar 

  3. W. Schröer, S. Wiegand, and H. Weingärtner, Ber. Bunsenges. Phys. Chem. 97, 975(1993).

    Google Scholar 

  4. M. Bonetti, C. Bagnuls, and C. Bervillier, J. Chem. Phys. 107, 550(1997).

    Google Scholar 

  5. M. Bonetti and P. Calmettes, Intern. J. Thermophys. 19, 1555(1998).

    Google Scholar 

  6. M. Bonetti, A. Oleinikova, and C. Bervillier, J. Phys. Chem. B 101, 2164(1997).

    Google Scholar 

  7. A. Oleinikova and M. Bonetti, Chem. Phys. Lett. 299, 417(1999).

    Google Scholar 

  8. M. Kleemeier, S. Wiegand, W. Schröer, and H. Weingärtner, J. Chem. Phys. 110, 3085(1999).

    Google Scholar 

  9. A. Oleinikova and M. Bonetti, J. Chem. Phys. 104, 3111(1996).

    Google Scholar 

  10. S. Wiegand, R. F. Berg, and J. M. H. Levelt Sengers, J. Chem. Phys. 109, 4533(1998).

    Google Scholar 

  11. T. Narayanan and K. S. Pitzer, J. Chem. Phys. 102, 8118(1995).

    Google Scholar 

  12. M. A. Anisimov, A. A. Povodyrev, V. D. Kulikov, and J. V. Sengers, Phys. Rev. Lett. 75, 3146(1995); K. Gutkowski, M. A. Anisimov, and J. V. Sengers, J. Chem. Phys. 114, 3133(2001).

    Google Scholar 

  13. M. E. Fisher and Y. Levin, Phys. Rev. Lett. 71, 3826(1993).

    Google Scholar 

  14. Y. Levin and M. E. Fisher, Physica A 225, 164(1996).

    Google Scholar 

  15. G. Stell, J. Phys. Condensed Matter 8, 9329(1996).

    Google Scholar 

  16. B. Guillot and Y. Guissani, Mol. Phys. 87, 37(1996).

    Google Scholar 

  17. D. M. Zuckerman, M. E. Fisher, and B. P. Lee, Phys. Rev. E 56, 6569(1997).

    Google Scholar 

  18. J. C. Shelley and G. N. Patey, J. Chem. Phys. 110, 1633(1999).

    Google Scholar 

  19. P. J. Camp and G. N. Patey, J. Chem. Phys. 111, 9000(1999).

    Google Scholar 

  20. H. L. Friedman and B. Larsen, J. Chem. Phys. 70, 92(1979).

    Google Scholar 

  21. M. E. Fisher, J. Stat. Phys. 75, 1(1994).

    Google Scholar 

  22. A. Oleinikova and M. Bonetti, Phys. Rev. Lett. 83, 2985(1999).

    Google Scholar 

  23. A. Oleinikova and M. Bonetti, J. Chem. Phys. 115, 9871(2001).

    Google Scholar 

  24. M. E. Fisher and J. S. Langer, Phys. Rev. Lett. 20, 665(1968).

    Google Scholar 

  25. R. Guida and J. Zinn-Justin, J. Phys. A. Math. Gen. 31, 8103(1998).

    Google Scholar 

  26. D. F. Evans, A. Yamauchi, R. Roman, and E. Z. Casassa, J. Colloid. Interface Sci. 88, 89(1982).

    Google Scholar 

  27. N. Benlhima, D. Lemordant, and P. Letellier, J. Chim. Phys. (Fr.) 86, 1919(1989).

    Google Scholar 

  28. D. P. Fernandez, A. R. H. Goodwin, and J. M. H. Levelt Sengers, Intern. J. Thermophys. 16, 929(1995).

    Google Scholar 

  29. J. Barthel, F. Feuerlein, R. Neueder, and R. Wachter, J. Solution Chem. 9, 209(1980); Y. C. Wu and W. F. Koch, J. Solution Chem. 20, 391(1991).

    Google Scholar 

  30. H. Weingärtner, T. Merkel, S. Käshammer, W. Schröer, and S. Wiegand, Ber. Bunsenges. Phys. Chem. 97, 970(1993).

    Google Scholar 

  31. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

    Google Scholar 

  32. M. Hadded, M. Biquard, P. Letellier, and R. Schaal, Can. J. Chem. 63, 565(1985).

    Google Scholar 

  33. G. Perron, A. Hardy, J. C. Justice, and J. E. Desnoyers, J. Solution Chem. 22, 1159(1993).

    Google Scholar 

  34. M. Allen, D. F. Evans, and R. Lumry, J. Solution Chem. 14, 549(1985).

    Google Scholar 

  35. Landolt-Börnstein, Densities of Alcohols, Vol. IV/8G (Springer, Berlin, 2000).

    Google Scholar 

  36. H. Vogel, Phys. Z. 22, 645(1921).

    Google Scholar 

  37. C. A. Angell, J. Phys. Chem. 68, 1917(1964); J. Phys. Chem. 70, 3988(dy1966).

    Google Scholar 

  38. C. A. Angell and E. J. Sare, J. Chem. Phys. 52, 1058(1970); C. A. Angell and R. D. Bressel, J. Phys. Chem. 76, 3244(1972).

    Google Scholar 

  39. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139(1965).

    Google Scholar 

  40. S. I. Smadley, The Interpretation of the Ionic Conductivity in Liquids (Plenum Press, New York, 1980).

    Google Scholar 

  41. D. F. Evans, S. H. Chen, G. W. Schriver, and E. M. Arnett, J. Amer. Chem. Soc. 103, 481(1981).

    Google Scholar 

  42. C. Bagnuls and C. Bervillier, Phys. Rev. B 32, 7209(1985).

    Google Scholar 

  43. F. J. Wegner, Phys. Rev. B 5, 4529(1972); F. J. Wegner, in Phase Transition and Critical Phenomena, Vol. VI, C. Domb and M. S. Green, eds. (Academic, New York, 1976) p. 7.

    Google Scholar 

  44. C. Agosta, S. Wang, L. Cohen, and H. Meyer, J. Low Temp. Phys. 67, 237(1987).

    Google Scholar 

  45. A. Stein and G. F. Allen, J. Chem. Phys. 59, 6079(1973).

    Google Scholar 

  46. L. C. Kenausis, E. C. Evers, and C. A. Kraus, Proc. Natl. Acad. Sci. U.S.A. 48, 121(1962); Proc. Natl. Acad. Sci. U.S.A. 49, 141(dy1963).

    Google Scholar 

  47. M. Hojo, T. Ueda, M. Nishimura, H. Hamada, M. Matsui, and S. Umetani, J. Phys. Chem. B 103, 8965(1999).

    Google Scholar 

  48. A. Z. Panagiotopoulos, Fluid Phase Equil. 76, 97(1992); J. M. Caillol, D. Levesque, and J. J. Weis, J. Chem. Phys. 107, 1565(1997); G. Orkoulas and A. Z. Panagiotopoulos, J. Chem. Phys. 110, 1581(1999); P. J. Camp and G. N. Patey, J. Chem. Phys. 111, 9000(1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oleinikova, A., Bonetti, M. Critical Behavior of the Electrical Conductivity of Concentrated Electrolytes: Ethylammonium Nitrate in n-Octanol Binary Mixture. Journal of Solution Chemistry 31, 397–413 (2002). https://doi.org/10.1023/A:1015811432158

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015811432158

Navigation