Skip to main content
Log in

Mixed Micelles as a Proliposomal, Lymphotropic Drug Carrier

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Four lipophilic, low molecular weight drugs solubilized in phosphatidylcholine–bile salt mixed micelles were injected s.c. into the hind legs of sheep and their cumulative recoveries in lymph draining from the site of application were determined. Surprisingly, the cumulative recoveries (percentage of dose) varied between less than 1 and 60%. We found that there is a correlation between the lipophilicity of the drug (log P octanol/water ∼ R m° value) and the proportion of the dose absorbed by the lymphatic route. Drugs with R m° values >10 are absorbed preferentially by the lymphatics (>50% of dose), whereas compounds with Rm° values <4 are hardly absorbed at all by the lymphatics (<10% of dose). By applying the prodrug principle we demonstrated that it is also possible to target drugs with Rm° values <4 to the lymphatics. Furthermore, the analysis of the collected lymph samples by gel filtration, quasi-elastic light scattering, and electron microscopy revealed that, following s.c. administration, mixed micelles are converted into homogeneous, unilamellar vesicles. In conclusion, these results suggest that mixed micelles may represent a suitable delivery system for low molecular weight drugs whose targets are lymphoid cells. In addition, for drugs where liposomal application leads to a therapeutic advantage, the thermo-dynamically stable mixed micelle could be a good alternative to the liposome. However, for both applications a high drug lipophilicity is a prerequisite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Tomlinson. Theory and practice of site-specific drug delivery. Adv. Drug Deliv. Rev. 1:127–131 (1987).

    Google Scholar 

  2. L. V. Leak. Studies on the permeability of lymphatic capillaries. J. Cell Biol. 50:300–323 (1971).

    Google Scholar 

  3. J. N. Weinstein, M. A. Steller, D. G. Covell, O. D. Holton, A. M. Keenan, S. M. Sieber, and R. J. Parker. Monoclonal antitumor antibodies in the lymphatics. Cancer Treat. Rep. 68:257–264 (1984).

    Google Scholar 

  4. A. Supersaxo, W. R. Hein, H. Gallati, and H. Steffen. Recombinant human interferon alpha-2a: Delivery to lymphoid tissue by selected modes of application. Pharm. Res. 5:472–478 (1988).

    Google Scholar 

  5. A. Supersaxo, W. R. Hein, and H. Steffen. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm. Res. 7:167–169 (1990).

    Google Scholar 

  6. Y. Takakura, S. Matsumoto, M. Hashida, and H. Sezaki. Enhanced lymphatic delivery of mitomycin c conjugated with dextran. Cancer Res. 44:2505–2510 (1984).

    Google Scholar 

  7. A. Hagiwara, T. Ahn, T. Ueda, A. Iwamoto, T. Ueda, T. Torii, and T. Takahashi. Anticancer agents adsorbed by activated carbon particles, a new form of dosage enhancing efficacy on lymphnodal metastases. Anticancer Res. 6:1005–1008 (1985).

    Google Scholar 

  8. M. Hashida, M. Egawa, S. Muranishi, and H. Sezaki. Role of intramuscular administration of water-in-oil emulsions as a method for increasing the delivery of anticancer agents to regional lymphatics. J. Pharmacokin. Biopharm. 5:225–239 (1977).

    Google Scholar 

  9. V. I. Kaledin, N. A. Matienko, V. P. Nikolin, Y. V. Gruntenko, V.G. Budker, and T. E. Vakhrusheva. Subcutaneously injected radiolabeled liposomes: Transport to the lymph nodes in mice. J. Natl. Cancer Inst. 69:67–71 (1982).

    Google Scholar 

  10. N. A. Mazer, G. B. Benedek, and M. C. Carey. Quasielastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions. Biochemistry 19:601–615 (1980).

    Google Scholar 

  11. N. A. Mazer, P. Schurtenberger, M. C. Carey, R. Preisig, K. Weigand, and W. Känzig. Quasi-elastic light scattering studies of native hepatic bile from the dog: Comparison with aggregative behavior of model biliary lipid systems. Biochemistry 23:1994–2005 (1984).

    Google Scholar 

  12. P. Schurtenberger, N. A. Mazer, and W. Känzig. Micelle to vesicle transition in aqueous solutions of bile salt and lecithin. J. Phys. Chem. 89:1042–1049 (1985).

    Google Scholar 

  13. K. Müller. Structural dimorphism of bile salt/lecithin mixed micelles. A possible regulatory mechanism for cholesterol solubility in bile? X-ray structure analysis. Biochemistry 20:404–414 (1981).

    Google Scholar 

  14. W. J. Claffey and R. T. Holzbach. Dimorphism in bile salt/lecithin mixed micelles. Biochemistry 20:415–418 (1981).

    Google Scholar 

  15. C. H. Spink, K. Müller, and J. M. Sturtevant. Precision scanning calorimetry of bile salt-phosphatidylcholine micelles. Biochemistry 21:6598–6605 (1982).

    Google Scholar 

  16. R. E. Stark and M. F. Roberts. Evidence for differential motional restraint on bile salt and phosphatidylcholine resonances. Biochim. Biophys. Acta 770:115–121 (1984).

    Google Scholar 

  17. R. A. Schwendener, A. Supersaxo, W. Rubas, and H. G. Weder. 5′-O-Palmitoyl-and 3′,5′-O-dipalmitoyl-5-fluoro-2′-deoxyuridine—novel lipophilic analogues of 5′-fluoro-2′-deoxyuridine: Synthesis, incorporation into liposomes and preliminary biological results. Biochem. Biophys. Res. Commun. 126:660–666 (1985).

    Google Scholar 

  18. H. Steffen and D. Schmidt. United States Patent No. 4′158′707, June 19, 1979.

  19. M. H. W. Milsmann, R. A. Schwendener, and H. G. Weder. The preparation of large single bilayer liposomes by a fast and controlled dialysis. Biochim. Biophys. Acta 512:147–155 (1978).

    Google Scholar 

  20. W. Butte, C. Fooken, R. Klussmann, and D. Schuller. Die Messung der Lipophilität mit Hilfe der reversed-phase HPLC and HPTLC. Kontakte (Darmstadt) 3:25–31 (1982).

    Google Scholar 

  21. A. Leo, C. Hansch, and D. Elkins. Partition coefficients and their uses. Chem. Rev. 71:525–616 (1971).

    Google Scholar 

  22. J. G. Hall and B. Morris. The output of cells in lymph from the popliteal node of sheep. Q. J. Exp. Physiol. 47:360–369 (1962).

    Google Scholar 

  23. M. Miyasaka and Z. Trnka. Sheep as an experimental model for immunology: Immunological techniques in vitro and in vivo. In I. Lefkovits and B. Pernis (eds.), Immunological Methods, Vol. III, Academic Press, New York, 1985, p. 403.

    Google Scholar 

  24. M. Müller, N. Meister, and H. Moor. Freezing in a propane jet and its application in freeze-fracturing. Mikroskopie (Wien) 36:129–140 (1980).

    Google Scholar 

  25. D. Lichtenberg and Y. Barenholz. Liposomes: Preparation, characterization, and preservation. In D. Glück (ed.), Methods of Biomedical Analysis, Vol. 33, John Wiley and Sons, New York, 1988, pp. 337–462.

    Google Scholar 

  26. R. Pabst. The spleen in lymphocyte migration. Immunol. Today 9:43–45 (1988).

    Google Scholar 

  27. B. Morris. The cells of lymph and their role in immunological reactions. In Handbuch der allgemeinen Pathologie, Vol. 3, Springer-Verlag, Berlin, 1972, Part 6, pp. 405–456.

    Google Scholar 

  28. R. E. Johnson. Symposium theme: A conceptual approach to integrated cancer therapy. Cancer 35:1–4 (1975).

    Google Scholar 

  29. J. L. Mulshine, A. M. Keenan, J. A. Carrasquillo, T. Walsh, R. I. Linnoila, O. D. Holton, J. Harwell, S. M. Larson, P. A. Bunn, and J. N. Weinstein. Immunolymphoscintigraphy of pulmonary and mediastinal lymph nodes in dogs: A new approach to lung cancer imaging. Cancer Res. 47:3572–3576 (1987).

    Google Scholar 

  30. G. Gregoriadis. Liposomes as Drug Carriers: Recent Trends and Progress, John Wiley and Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Supersaxo, A., Hein, W.R. & Steffen, H. Mixed Micelles as a Proliposomal, Lymphotropic Drug Carrier. Pharm Res 8, 1286–1291 (1991). https://doi.org/10.1023/A:1015807913934

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015807913934

Navigation