Skip to main content
Log in

Chemical Pathways of Peptide Degradation. II. Kinetics of Deamidation of an Asparaginyl Residue in a Model Hexapeptide

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Deamidation of Asn residues is a major chemical pathway of degradation of peptides and proteins. To understand better the external factors that influence deamidation, we studied the degradation of the hexapeptide Val–Tyr–Pro–Asn–Gly–Ala, a fragment of adrenocorticotropic hormone, by HPLC. The deamidation of this model peptide showed marked dependence on pH, temperature, and buffer composition. In the pH range 5 to 12, the peptide deamidated exclusively via a cyclic imide intermediate with the formation of both the Asp- and the isoAsp-hexapeptides. Buffer catalysis was also observed in the pH range of 7 to 11. However, at acidic pH's, the pathway of deamidation involved direct hydrolysis of the amide side chain of Asn residue to produce only the Asp-hexapeptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. B. Robinson and C. J. Rudd. In B. L. Horecker and E. R. Stadtman (eds.), Current Topics in Cellular Regulations, Vol. 8, Academic Press, New York, 1974, pp. 247–295.

    Google Scholar 

  2. P. Bornstein and G. Balian. Methods Enzymol. 47:132–145 (1977).

    Google Scholar 

  3. T. Geiger and S. Clarke. J. Biol. Chem. 262:785–794 (1987).

    Google Scholar 

  4. R. Lura and V. Schirch. Biochemistry 27:7671–7677 (1988).

    Google Scholar 

  5. Y. C. Meinwald, E. R. Stimson, and H. A. Scheraga. Int. J. Peptide Protein Res. 28:79–84 (1986).

    Google Scholar 

  6. M. A. Ondetti, A. Deer, J. T. Sheehan, J. Pluscec, and O. Kocy. Biochemistry 7:4069–4075 (1968).

    Google Scholar 

  7. S. Capasso, L. Mazzarella, F. Sica, and A. Zagari. Pept. Res. 2:195–200 (1989).

    Google Scholar 

  8. P. J. M. van den Oestelaar and H. J. Hoenders. Adv. Exp. Med. Biol. 231:261–267 (1988).

    Google Scholar 

  9. R. C. Stephenson and S. Clarke. J. Biol. Chem. 264:6164–6170 (1989).

    Google Scholar 

  10. M. Bodanszky and J. Martinez. Synthesis 333–356 (1981).

  11. T. Flatmark. Acta Chem. Scand. 20:1487–1496 (1966).

    Google Scholar 

  12. K. U. Yuksel and R. W. Gracy. Arch. Biochem. Biophys. 248:452–459 (1986).

    Google Scholar 

  13. D. W. Aswad. J. Biol Chem. 259:10714–10721 (1984).

    Google Scholar 

  14. B. A. Johnson and D. W. Aswad. Biochemistry 24:2581–2586 (1985).

    Google Scholar 

  15. N. P. Bhatt, K. Patel, and R. T. Borchardt. Pharm. Res. 7:593–599 (1990).

    Google Scholar 

  16. E. D. Murray, Jr., and S. Clarke. J. Biol. Chem. 259:10722–10732 (1984).

    Google Scholar 

  17. J. P. Tam, M. W. Riemer, and R. B. Merrifield. Pept. Res. 1:6–18 (1988).

    Google Scholar 

  18. I. Schon and L. Kisfaludy. Int. J. Peptide Protein Res. 14:485–494 (1979).

    Google Scholar 

  19. J. P. Tam, T. W. Wong, M. W. Rieman, F. S. Tjoeng, and R. B. Merrifield. Tetrahedron Lett. 42:4033–4036 (1979).

    Google Scholar 

  20. C. C. Yang and R. B. Merrifield. J. Org. Chem. 41:1032–1041 (1976).

    Google Scholar 

  21. T. Baba, H. Sugiyama, and S. Seto. Chem. Pharm. Bull. 21:207–209 (1973).

    Google Scholar 

  22. J. Stewart and J. S. Young. In Solid Phase Peptide Synthesis, 2nd ed., Pierce, Rockford, IL, 1984, pp. 71–95.

    Google Scholar 

  23. G. Allen. Sequencing of Proteins and Peptides, North-Holland, Amsterdam, 1981.

    Google Scholar 

  24. I. H. Segel. Biochemical Calculations, John Wiley and Sons, New York, 1968.

    Google Scholar 

  25. G. R. Drapeau. Methods Enzymol. 45:469–475 (1976).

    Google Scholar 

  26. A. S. Inglis. Methods Enzymol. 91:324–332 (1983).

    Google Scholar 

  27. T. J. Ahern and A. M. Klibanov. Science 228:1280–1284 (1985).

    Google Scholar 

  28. S. E. Zale and A. M. Klibanov. Biochemistry 25:5432–5444 (1986).

    Google Scholar 

  29. I. M. Ota, L. Ding, and S. Clarke. J. Biol. Chem. 262:8522–8531 (1987).

    Google Scholar 

  30. I. M. Ota and S. Clarke. Biochemistry 28:4020–4027 (1989).

    Google Scholar 

  31. L. E. Kirsch, R. M. Molloy, M. Debono, P. Baker, and K. Z. Farid. Pharm. Res. 6:387–393 (1989).

    Google Scholar 

  32. A. Di Donato, P. Galletti, and G. D'Alessio. Biochemistry 25:8361–8368 (1986).

    Google Scholar 

  33. F. Araki, H. Nakamura, N. Nojima, K. Tsukumo, and S. Sakamoto. Chem. Pharm. Bull. 37:404–406 (1989).

    Google Scholar 

  34. S. Clarke. Int. J. Peptide Protein Res. 30:808–821 (1987).

    Google Scholar 

  35. C. K. Sauers, C. A. Marikakis, and M. A. Lupton. J. Am. Chem. Soc. 95:6792–6799 (1973).

    Google Scholar 

  36. M. L. Ernst and G. L. Schmir. J. Am. Chem. Soc. 88:5001–5009 (1966).

    Google Scholar 

  37. S. A. Bemhard, A. Berger, J. H. Carter, E. Katchalski, M. Sela, and Y. Shelitiny. J. Am. Chem. Soc. 84:2421–2434 (1962).

    Google Scholar 

  38. B. A. Johnson, E. D. Murray, Jr., S. Clarke, D. B. Glass, and D. W. Aswad. J. Biol. Chem. 262:5622–5629 (1987).

    Google Scholar 

  39. M. Bodanszky and J. Z. Kwei. Int. J. Peptide Protein Res. 12:69–74 (1978).

    Google Scholar 

  40. P. N. McFadden and S. Clarke. Proc. Natl. Acad. Sci. USA 84:2595–2599 (1987).

    Google Scholar 

  41. E. D. Murray, Jr., and S. Clarke. J. Biol. Chem. 261:306–313 (1986).

    Google Scholar 

  42. P. N. McFadden and S. Clarke. J. Biol. Chem. 261:11503–11511 (1986).

    Google Scholar 

  43. E. Tanford. Adv. Protein Chem. 17:69–165 (1962).

    Google Scholar 

  44. A. Fersht. In Enzyme Structure and Mechanism, 2nd ed., W. H. Freeman, New York, 1985, pp. 155–175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, K., Borchardt, R.T. Chemical Pathways of Peptide Degradation. II. Kinetics of Deamidation of an Asparaginyl Residue in a Model Hexapeptide. Pharm Res 7, 703–711 (1990). https://doi.org/10.1023/A:1015807303766

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015807303766

Navigation