Skip to main content
Log in

Sulfate Homeostasis. IV. Probenecid-Induced Alterations of Inorganic Sulfate in Rats

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Homeostasis of inorganic sulfate is maintained by the capacity-limited renal reabsorption of sulfate in the proximal tubule. The purpose of the present investigation was to determine if probenecid, the classical inhibitor of renal organic anion secretion, may affect sulfate renal clearance. Two groups of rats were administered in a randomized crossover design, an i.v. bolus dose (20.6 or 92.4 mg/kg) and 4-hr infusion (0.28 or 0.59 mg/min/kg) of probenecid or vehicle, and blood and urine samples were collected. At a steady-state serum concentration of 0.45 mM, probenecid had no significant effect on the serum concentrations or renal clearance of inorganic sulfate, whereas at a serum concentration of 1.4 mM, probenecid treatment caused a significant decrease in serum sulfate concentrations (0.57 ± 0.11 vs 0.96 ± 0.19 mM in controls, mean ± SD, n = 6, P < 0.001) due to an increase in the renal clearance of sulfate (3.88 ± 1.18 vs 2.13 ± 0.84 ml/min/kg in controls, P < 0.01). The fraction of the filtered sulfate that was reabsorbed was significantly decreased (0.38 ± 0.23, vs 0.74 ± 0.09 in controls, P < 0.01). Therefore, probenecid treatment results in the inhibition of the renal reabsorption of inorganic sulfate in rats in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. J. Mulder. Sulfation in vivo and in isolated cell preparations. In G. J. Mulder (ed.), Sulfation of Drugs and Related Compounds, CRC Press, Boca Raton, FL, 1981, pp. 131–186.

    Google Scholar 

  2. E. L. Becker, H. O. Heinemann, K. Igaraski, J. E. Hodler, and H. Gershberg. Renal mechanisms for the excretion of inorganic sulfate in man. J. Clin. Invest. 39:1909–1913 (1960).

    Google Scholar 

  3. F. Berglund. Transport of inorganic sulfate by the renal tubules. Acta Physiol. Scand. 49 (Suppl. 172):1–37 (1981).

    Google Scholar 

  4. J. H. Lin and G. Levy. Renal clearance of inorganic sulfate in rats: Effect of acetaminophen-induced depletion of endogenous sulfate. J. Pharm. Sci. 72:213–217 (1983).

    Google Scholar 

  5. K. Hierholzer, R. Cade, R. Gurd, R. Kessler, and R. Pitts. Stop flow analysis of renal reabsorption and excretion of sulfate in the dog. Am. J. Physiol. 198:833–837 (1960).

    Google Scholar 

  6. H. Lücke, G. Stange, and H. Murer. Sulphate-ion/sodium-ion co-transport by brush border membrane vesicles isolated from rat kidney cortex. Biochem. J. 182:223–229 (1979).

    Google Scholar 

  7. K. J. Ullrich, G. Rumich, and S. Klöss. Bidirectional active transport of thiosulfate in the proximal convolution of the rat kidney. Pflügers Arch. 387:127–132 (1980).

    Google Scholar 

  8. J. B. Pritchard and J. L. Renfro. Renal sulfate transport at the basolateral membrane is mediated by anion exchange. Proc. Natl. Acad. Sci. USA 80:2603–2607 (1983).

    Google Scholar 

  9. I. Löw, T. Friedrich, and G. Burckhardt. Properties of an anion exchanger in rat renal basolateral membrane vesicles. Am. J. Physiol. 246:F334–F342 (1984).

    Google Scholar 

  10. J. V. Møller and M. I. Sheikh. Renal organic anion transport system: Pharmacological, physiological and biochemical aspects. Pharmacol. Rev. 34:315–358 (1983).

    Google Scholar 

  11. K. J. Ullrich, G. Rumrich, and S. Klöss. Contraluminal organic anion and cation transport in the proximal renal tubule. V. Interaction with sulfamoyl and phenoxy diuretics with β-lactam antibiotics. Kidney Int. 36:78–88 (1989).

    Google Scholar 

  12. I. J. Deyrup. Effect on kidney S35O4 uptake of compounds related to SO4 transport and metabolism. Am. J. Physiol. 207:84–88 (1964).

    Google Scholar 

  13. F. Berglund. Comparison between effects of carinamide and probenecid on thiosulphate secretion in the renal tubules of the dog. Acta Pharmacol. Toxicol. 19:371–376 (1962).

    Google Scholar 

  14. A. Selen, G. L. Amidon, and P. G. Welling. Pharmacokinetics of probenecid following oral doses to human volunteers. J. Pharm. Sci. 71:1238–1242 (1982).

    Google Scholar 

  15. B.-M. Emanuelsson, B. Beerman, and L. K. Paalzow. Nonlinear elimination and protein binding of probenecid. Eur. J. Clin. Pharmacol. 32:395–401 (1987).

    Google Scholar 

  16. B.-M. Emanuelsson and L. K. Paalzow. Dose-dependent pharmacokinetics of probenecid in the rat. Biopharm. Drug Disp. 9:59–70 (1988).

    Google Scholar 

  17. R. K. Harle and T. Cowen. Determination of probenecid in serum by high performance liquid chromatography. Analyst 103:492–496 (1978).

    Google Scholar 

  18. M. E. Morris and G. Levy. Assay of inorganic sulfate in biologic fluids by nonsuppressed (single-column) ion chromatography. Anal. Biochem. 172:16–21 (1988).

    Google Scholar 

  19. H. Cheng and W. J. Jusko. Mean residence time concepts for pharmacokinetic systems with nonlinear drug elimination described by the Michaelis-Menten equation. Pharm. Res. 5:156–164 (1988).

    Google Scholar 

  20. M. E. Morris and G. Levy. Serum concentration and renal excretion by normal adults of inorganic sulfate after acetaminophen, ascorbic acid, or sodium sulfate. Clin. Pharmacol. Ther. 33:529–536 (1983).

    Google Scholar 

  21. K. J. Ullrich, G. Rumrich, and S. Klöss. Contraluminal sulfate transport in the proximal tubule of the rat kidney. II. Specificity: Sulfate ester, sulfonates and aminosulfonates. Pflügers Arch. 404:293–299 (1985).

    Google Scholar 

  22. K. J. Ullrich, G. Rumrich, and S. Klöss. Contraluminal sulfate transport in the proximal tubule of the rat kidney. IV. Specificity: salicylate analogs. Pflügers Arch. 404:307–310 (1985).

    Google Scholar 

  23. M. E. Morris, O. Kwon, and I. L. Mansfield. Sulfate homeostasis. I. Effect of salicylic acid and its metabolites on inorganic sulfate in rats. J. Pharmacol. Exp. Ther. 244:945–949 (1988).

    Google Scholar 

  24. B. J. de Vries, W. B. van den Berg, and L. B. A. van de Putte. Salicylate-induced depletion of endogenous inorganic sulfate. Potential role in the suppression of sulfated glycosaminoglycan synthesis in murine articular cartilage. Arth. Rheum. 28:922–929 (1985).

    Google Scholar 

  25. B. J. de Vries, P. M. van der Kraan, and W. B. van den Berg. Effects of drug mediated serum sulfate depletion on glycosaminoglycan synthesis. Agents Actions 29:224–231 (1990).

    Google Scholar 

  26. D. E. Humpries, C. K. Silbert, and J. E. Silbert. Glycosaminoglycan production by bovine aortic endothelial cells cultured in sulfate-depleted medium. J. Biol. Chem. 261:9122–9127 (1986).

    Google Scholar 

  27. R. E. Galinsky and G. Levy. Dose-and time-dependent elimination of acetaminophen in rats: Pharmacokinetic implications of cosubstrate depletion. J. Pharmacol. Exp. Ther. 219:14–20 (1981).

    Google Scholar 

  28. R. H. Demeio. Sulfate activation and transfer. In D. M. Greenway (ed.), Metabolic Pathways, 3rd ed., Academic Press, New York, 1975, pp. 287–357.

    Google Scholar 

  29. W. B. Huttner and P. A. Bauerle. Protein sulfation on tyrosine. Mod. Cell Biol. 6:97–140 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darling, I.M., Morris, M.E. Sulfate Homeostasis. IV. Probenecid-Induced Alterations of Inorganic Sulfate in Rats. Pharm Res 8, 376–379 (1991). https://doi.org/10.1023/A:1015805918168

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015805918168

Navigation