Skip to main content
Log in

Bioadhesion by Means of Specific Binding of Tomato Lectin

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The possibility of developing bioadhesive drug delivery systems on the basis of molecules which selectively bind to the small intestinal epithelium by specific, receptor-mediated mechanisms was investigated using a lectin isolated from tomato fruits (Lycopersicum esculentum). The tomato lectin (TL) was found to bind specifically onto both isolated, fixed pig enterocytes and monolayers of human Caco-2 cell cultures with a similar affinity. TL-coated polystyrene microspheres (0.98 µm) also showed specific binding to enterocytes in vitro. Lectin binding was found to be favored at neutral pH and to be reduced in an acidic environment. Crude pig gastric mucin, however showed a marked cross-reactivity in vitro, indicating that lectin binding to the cell surface in vivo might be inhibited by mucus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. S. Ch'ng, H. Park, P. Kelly, and J. R. Robinson. Bioadhesive polymers as platforms for oral controlled drug delivery. II. Synthesis and evaluation of some swelling, water-insoluble polymers. J. Pharm. Sci. 74:399–405 (1985).

    Google Scholar 

  2. M. A. Longer, H. S. Ch'ng, and J. R. Robinson. Bioadhesive polymers as platforms for oral controlled drug delivery. III. Oral delivery of chlorothiazide using bioadhesive polymers. J. Pharm. Sci. 74:406–411 (1985).

    Google Scholar 

  3. N. A. Peppas and P. A. Buri. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J. Control. Release 2:47–57 (1985).

    Google Scholar 

  4. C. M. Lehr, J. A. Bouwstra, H. E. Boddé, and H. E. Junginger. A surface energy analysis of mucoadhesion. I. Contact angle measurements on polycarbophil and pig intestinal mucosa in physiologically relevant media. Pharm. Res. 9:70–75 (1992).

    Google Scholar 

  5. C.-M. Lehr, H. E. Boddé, J. A. Bouwstra, and H. E. Junginger. A surface energy analysis of mucoadhesion. II. The combined spreading coefficient as a new criterion for adhesion in a three phase (solid-liquid-solid) system (submitted for publication).

  6. C.-M. Lehr, F. G. J. Poelma, H. E. Junginger, and J. J. Tukker. An estimate of turnover time of intestinal mucus gel layer in the rat in situ loop. Int. J. Pharm. 70:235–240 (1991).

    Google Scholar 

  7. C.-M. Lehr, J. A. Bouwstra, J. J. Tukker, A. G. de Boer, J. C. Verhoef, D. D. Breimer, and H. E. Junginger. The role of mucus for the concept of mucoadhesion in controlling gastrointestinal transit of drug delivery systems (submitted for publication).

  8. E. H. Beachey. Bacterial adherence: Adhesin-receptor interactions mediating the attachment of bacteria to mucosal surfaces. J. Infect. Dis. 143:325–345 (1981).

    Google Scholar 

  9. B. A. Pethica. The physical chemistry of cell adhesion. Exp. Cell Res. Suppl. 8:123–140 (1961).

    Google Scholar 

  10. B. A. Pethica. Microbial and cell adhesion. In R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent (eds.), Microbial Adhesion to Surfaces, Ellis Horwood, Chichester, 1980, pp. 19–45.

    Google Scholar 

  11. A. J. Caston, S. S. Davis, and P. Williams. The potential of fimbrial proteins for delaying intestinal transit of drug delivery systems. Proc. Int. Symp. Control Rel. Bioact. Mater. 17:313–314 (1990).

    Google Scholar 

  12. J. F. Bridges, J. F. Woodley, R. Duncan, and J. Kopeček. Soluble N-(2-hydroxypropyl) methacrylamide copolymers as a potential oral, controlled-release, drug delivery system. I. Bioadhesion to the rat intestine in vitro. Int. J. Pharm. 44:213–223 (1988).

    Google Scholar 

  13. D. C. Kilpatrick, A. Pusztai, G. Grant, C. Graham, and S. W. B. Ewen. Tomato lectin resists digestion in the mammalian alimentary canal and binds to intestinal villi without deleterious effects. FEBS Lett. 185:299–305 (1985).

    Google Scholar 

  14. M. S. Nachbar, J. D. Oppenheim, and J. O. Thomas. Lectins in the U.S. diet. Isolation and characterization of a lectin from the tomato (Lycopersicon esculentum). J. Biol. Chem. 5:2056–2061 (1981).

    Google Scholar 

  15. J. F. Woodley and B. Naisbett. The potential of lectins for delaying the intestinal transit of drugs. Proc. Int. Symp. Control Rel. Bioact. Mater. 15:125–126 (1988).

    Google Scholar 

  16. J. F. Woodley and B. Naisbett. The potential of lectins for oral drug delivery: In vitro and in vivo uptake of tomato lectin. Proc.Int. Symp. Control Rel. Bioact. Mater. 16:58–59 (1989).

    Google Scholar 

  17. D. C. Kilpatrick, J. Weston, and S. J. Urbaniak. Purification and separation of tomato isolectins by chromatofocusing. Anal. Biochem. 134:205–209 (1983).

    Google Scholar 

  18. D. C. Kilpatrick and M. M. Yeoman. Purification of the lectin from Datura stramonium. Biochem. J. 175:1151–1153 (1978).

    Google Scholar 

  19. S. Knutton, D. R. Lloyd, D. C. A. Candy, and A. S. McNeish. Adhesion of enterotoxigenic Escherichia coli to human small intestinal enterocytes. Infect. Immun. 48:824–831 (1985).

    Google Scholar 

  20. G. A. Weiland and P. B. Molinoff. Quantitative analysis of drug-receptor interactions. I. Determination of kinetic and equilibrium properties. Life Sci. 29:313–330 (1981).

    Google Scholar 

  21. M. Feller, D. Behnke, and E. Gruenstein. Relationship between lectin monosaccharide specifity and binding to the plasma membrane of human fibroblasts. Biochim. Biophys. Acta 586:315–329 (1979).

    Google Scholar 

  22. A. R. Hilgers, R. A. Conradi, and P. S. Burton. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res. 7:902–910 (1990).

    Google Scholar 

  23. B. Naisbett and J. F. Woodley. Binding of tomato lectin to the intestinal mucosa and its potential for oral drug delivery. Biochem. Soc. Trans. 19:879–880 (1990).

    Google Scholar 

  24. B. Naisbett and J. F. Woodley. Uptake of tomato lectin by the adult rat small intestine in vitro. Biochem. Soc. Trans. 17:883 (1989).

    Google Scholar 

  25. J. M. Callaghan, B.-H. Toh, J. M. Pettitt, D. C. Humphris, and P. A. Gleeson. Poly-N-acetyllactosamine-specific tomato lectin interacts with gastric parietal cells. J. Cell Sci. 95:563–576 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehr, CM., Bouwstra, J.A., Kok, W. et al. Bioadhesion by Means of Specific Binding of Tomato Lectin. Pharm Res 9, 547–553 (1992). https://doi.org/10.1023/A:1015804816582

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015804816582

Navigation