Establishing a Framework for the Functional Mammary Gland: From Endocrinology to Morphology

  • Russell C. Hovey
  • Josephine F. Trott
  • Barbara K. Vonderhaar
Article

Abstract

From its embryonic origins, the mammary gland in females undergoes a course of ductal development that supports the establishment of alveolar structures during pregnancy prior to the onset of lactogenesis. This development includes multiple stages of proliferation and morphogenesis that are largely directed by concurrent alterations in key hormones and growth factors across various reproductive states. Ductal elongation is directed by estrogen, growth hormone, insulin-like growth factor-I, and epidermal growth factor, whereas ductal branching and alveolar budding is influenced by additional factors such as progesterone, prolactin, and thyroid hormone. The response by the ductal epithelium to various hormones and growth factors is influenced by epithelial–stromal interactions that differ between species, possibly directing species-specific morphogenesis. Evolving technologies continue to provide the opportunity to further delineate the regulation of ductal development. Defining the hormonal control of ductal development should facilitate a better understanding of the mechanisms underlying mammary gland tumorigenesis.

ductal hormones growth factors epithelial–stromal morphogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    G. T. Beatson (1896). On treatment of inoperable carcinoma of the mammal; suggestions for a new method of treatment, with illustrative cases. Lancet 2:104–107, 162–165.Google Scholar
  2. 2.
    W. Imagawa, G. K. Bandyopadhyay, and S. Nandi (1990). Regulationof mammary epithelial cell growth in mice and rats. Endocr.Rev.11:494–523.PubMedGoogle Scholar
  3. 3.
    B. I. Balinsky (1950). Onthe pre-natal growth of the mammarygland rudiment in the mouse. J.Anat.84:227–235.PubMedGoogle Scholar
  4. 4.
    K. Kratochwil (1969). Organ specificity in mesenchymalinduction demonstrated in the embryonic development of themammary gland of the mouse. Dev.Biol.20:46–71.PubMedGoogle Scholar
  5. 5.
    T. Sakakura (1987). Mammary embryogenesis. In M. C. Neville and C. W. Daniel (eds.),(hhh) The Mammary Gland. Plenum, New York, pp. 37–66.Google Scholar
  6. 6.
    K. Kimata, T. Sakakura, Y. Inaguma, M. Kato, and Y. Nishizuka (1985). Participation of two different mesenchymesin the developing mouse mammary gland: Synthesisof basement membrane components by fat pad precursor cells. J.Embryol.Exp.Morphol.89:243–257.PubMedGoogle Scholar
  7. 7.
    T. Sakakura, Y. Sakagami, and Y. Nishizuka (1982). Dualorigin of mesenchymal tissues participating in mouse mam-marygland embryogenesis. Dev.Biol.91:202–207.PubMedGoogle Scholar
  8. 8.
    C. H. Knight and M. Peaker (1982). Development of the mammary gland. J.Reprod.Fertil.65:521–536.PubMedGoogle Scholar
  9. 9.
    A. Raynaud (1961). Morphogenesis of the mammary gland. In S. K. Kon and A. T. Cowie (eds.),(hhh) Milk: The Mammary Glandand Its Secretions. Academic Press, New York, pp. 3–46.Google Scholar
  10. 10.
    L. G. Sheffield (1988). Organization and growth of mammaryepithelia in the mammary gland fat pad. J.Dairy Sci.71:2855–2874.PubMedGoogle Scholar
  11. 11.
    L. Martinet (1962). Embryologie de la mamelle chez le mouton. Ann.Biol.Anim.Biochim.Biophys.2:175–184.Google Scholar
  12. 12.
    J. Russo and I. H. Russo (1987). Development of the human mammary gland. In M. C. Neville and C. W. Daniel (eds.), The MammaryGland: Development, Regulation and Function. Plenum, New York, pp. 67–93.Google Scholar
  13. 13.
    A. G. Naccarato, P. Viacava, S. Vignati, G. Fanelli, A. G. Bonadi, G. Montruccoli, and G. Bevilacqua (2000). Biomorphological events in the development of the human female mammary gland from fetal age to puberty. Virchows Arch.436:431–438.PubMedGoogle Scholar
  14. 14.
    G. Mayer and M. Klein (1961). Histology and cytology of the mammary gland. In S. K. Kon and A. T. Cowie (eds.),(hhh) Milk: The Mammary Gland and Its Secretions. Academic Press, New York, pp. 47–116.Google Scholar
  15. 15.
    R. M. Akers (1990). Lactational physiology: A ruminant animal perspective. Protoplasma 159:96–111.Google Scholar
  16. 16.
    R. C. Hovey, T. B. McFadden, and R. M. Akers (1999). Regulation of mammary gland growth and morphogenesis by the mammary fat pad: A species comparison. J.Mammary GlandBiol.Neoplasia 4:53–68.Google Scholar
  17. 17.
    R. C. Hovey, D. E. Auldist, D. D. S. Mackenzie, and T. B. McFadden (2000). Preparation of an epithelium-free mammary fat pad and subsequent mammogenesis in ewes. J.Anim.Sci.78:2177–2185.PubMedGoogle Scholar
  18. 18.
    Y. N. Sinha and H. A. Tucker (1969). Mammary development and pituitary prolactin level of heifers from birth through puberty and during the estrous cycle. J.Dairy Sci.52:507–512.PubMedGoogle Scholar
  19. 19.
    R. M. Akers, T. B. McFadden, S. Purup, M. Vestergaard, K. Sejrsen, and A. V. Capuco (2000). Local IGF-I axis in peripubertal ruminant mammary development. J.MammaryGland Biol.Neoplasia 5:43–51.Google Scholar
  20. 20.
    B. Heuberger, I. Fitzka, G. Wasner, and K. Kratochwil (1982). Induction of androgen receptor formation by epithelium-mesenchymeinteraction in embryonic mouse mammarygland. Proc.Natl.Acad.Sci.USA 79:2957–2961.PubMedGoogle Scholar
  21. 21.
    K. Kratochwil (1982). The importance of epithelial-stromal interaction in mammary gland development. In M. A. Rich, J. C. Hager, and J. Taylor-Papadimitriou (eds.),(hhh) Breast Cancer: Origins, Detection, and Treatment. Martinus Nijhoff Publishing, Boston, pp. 1–12.Google Scholar
  22. 22.
    H. D¨urnberger and K. Kratochwil (1980). Specificity of tissue interaction and origin of mesenchymal cells in the androgen response of the embryonic mammary gland. Cell 19:465–471.PubMedGoogle Scholar
  23. 23.
    J. J. Wysolmerski, W. M. Philbrick, M. E. Dunbar, B. Lanske, H. Kronenberg, and A. E. Broadus (1998). Rescue of the parathyroid hormone-related protein knockout mouse demonstrates that parathyroid hormone-related protein is essential for mammary gland development. Development 125:1285–1294.PubMedGoogle Scholar
  24. 24.
    J. Foley, P. Dann, J. Hong, J. Cosgrove, B. Dreyer, D. Rimm, M. Dunbar, W. Philbrick, and J. Wysolmerski (2001). Parathy-roidhormone-related protein maintains mammary epithelialfate and triggers nipple skin differentiation during embryonicbreast development. Development 128:513–525.PubMedGoogle Scholar
  25. 25.
    J. J. Wysolmerski, S. Cormier, W. Philbrick, P. Dann, J.-P. Zhang, J. Roume, A.-L. Delezoide, and C. Silve (2001). Absence of functional type 1 parathyroid hormone(PTH)/PTH-related protein receptors in humans is associ-atedwith abnormal breast development and tooth impaction. J.Clin.Endocrinol.Metab.86:1788–1794.PubMedGoogle Scholar
  26. 26.
    A. Raynaud (1955). Observations sur lles modifications provoquees par les hormones oestrogenes, du mode dedeveloppement des mamelons des foetus de Souris. C.R.Acad.Sci.240:674–676.Google Scholar
  27. 27.
    A. Raynaud (1950). Recherches experimentales sur le developpementde l'appareil genital et le fonctionementdes glandesendocrines des foetus de souriset de mulot. Arch.Anat.Microsc.Morphol.Exp.39:518–576.Google Scholar
  28. 28.
    J. F. Couse and K. S. Korach (1999). Estrogen receptor null mice: What have we learned and where will they lead us? Endocr.Rev.20:358–417.PubMedGoogle Scholar
  29. 29.
    G. W. Robinson, A. B. C. Karpf, and Kratochwil (1999). Regulation of mammary gland development by tissue interaction. J.Mammary Gland Biol.Neoplasia 4:9–19.PubMedGoogle Scholar
  30. 30.
    M. E. Dunbar and J. J. Wysolmerski (1999). Parathyroid hormone-related protein: A developmental regulatory molecule necessary for mammary gland development. J.Mammary Gland Biol.Neoplasia 4:21–34.PubMedGoogle Scholar
  31. 31.
    C. S. Freeman and Y. J. Topper (1978). Progesterone is not essential to the differentiative potential of mammary epithelium in the male mouse. Endocrinology 103:186–192.PubMedGoogle Scholar
  32. 32.
    J. A. Myers (1919). Studies on the mammary gland. IV. The histology of the mammary gland in male and femalealbino rats from birth to ten weeks of age. Am.J.Anat.25:395.Google Scholar
  33. 33.
    R. L. Ceriani (1970). Fetal mammary gland differentiation(hhh) invitro in response to hormones. II. Biochemical findings. Dev.Biol.21:530–546.PubMedGoogle Scholar
  34. 34.
    G. R. Cunha, P. Young, K. Christov, R. Guzman, S. Nandi, F. Talamantes, and G. Thordarson (1995). Mammary phenotypic expression induced in epidermal cells by embryonic mammary mesenchyme. Acta Anat.(Basel).152:195–204.Google Scholar
  35. 35.
    R. C. Hovey, J. F. Trott, E. Ginsburg, A. Goldhar, M. M. Sasaki, S. J. Fountain, K. Sundararajan, and B. K. Vonderhaar (2001). Transcriptional and spatiotemporal regulation of prolactinreceptor mRNA and cooperativity with progesterone receptor function during ductal branch growth in the mammary gland. Dev.Dyn.222:354–367.PubMedGoogle Scholar
  36. 36.
    M. J. Soares, T. N. Faria, K. F. Roby, and S. Deb (1991). Pregnancy and the prolactin family of hormones: Coordination of anterior pituitary, uterine, and placental expression. Endocr.Rev.12:402–423.PubMedGoogle Scholar
  37. 37.
    M. Freemark, K. Kirk, C. Pihoker, M. Robertson, R. Shiu, and P. Driscoll (1993). Pregnancy lactogens in the rat conceptus and fetus: Circulating levels, distribution of binding, and expression of receptor messenger RNA. Endocrinology 133:1830–1842.PubMedGoogle Scholar
  38. 38.
    L. Ogren and F. Talamantes (1988). Prolactins of pregnancyand their cellular source. Int.Rev.Cytol. 112:1–65.PubMedGoogle Scholar
  39. 39.
    S. Z. Haslam and K. A. Nummy (1992). The ontogeny and cellular distribution of estrogen receptors in normal mouse mammary gland. J.Steroid Biochem.Mol.Biol.42:589–595.PubMedGoogle Scholar
  40. 40.
    S. Z. Haslam (1988). Acquisition of estrogen-dependent progesterone receptors by normal mouse mammary gland. Ontogeny of mammary progesterone receptors. J.SteroidBiochem.31:9–13.Google Scholar
  41. 41.
    R. L. Maple, R. M. Akers, and K. Plaut (1998). Effects ofsteroid hormone treatment on mammary development in pre-pubertalheifers. Domest.Anim.Endocrinol.15:489–498.PubMedGoogle Scholar
  42. 42.
    S. Ball, K. Polson, J. Emeny, W. Eyestone, and R. M. Akers(2000). Induced lactation in prepubertal holstein heifers. J.Dairy Sci.83:2459–2463.PubMedGoogle Scholar
  43. 43.
    T. B. McFadden, R. M. Akers, and W. E. Beal (1988). Milk protein secretion by explants of prepubertal bull mammary tissue: Breed differences. J.Dairy Sci.71:2904–2914.PubMedGoogle Scholar
  44. 44.
    S. I. Kaplan, M. M. Grumbach, and T. H. Shepard (1972). Theontogenesis of human fetal hormones. I. Growth hormone and insulin. J.Clin.Invest.51:3038–3093.Google Scholar
  45. 45.
    J. W. Keeling, E. Ozer, G. King, and F. Walker (2000). Oestrogen receptor alpha in female fetal, infant, and child mammary tissue. J.Pathol.191:449–451.PubMedGoogle Scholar
  46. 46.
    J. F. Wiesen, P. Young, Z. Werb, and G. R. Cunha (1999). Signaling through the stromal epidermal growth factor receptoris necessary for mammary ductal development. Development 126:335–344.PubMedGoogle Scholar
  47. 47.
    P. P. Osin (1998). Breast development gives insights into breast disease. Histopathology 33:275–283.PubMedGoogle Scholar
  48. 48.
    T. Mori, H. Nagasawa, and H. A. Bern (1979). Long-term effects of perinatal exposure to hormones on normal and neo-plastic mammary growth in rodents: A review. J.Environ.Pathol.Toxicol.3:191–205.PubMedGoogle Scholar
  49. 49.
    M. Peaker (1991). Production of hormones by the mammary gland: Short review. Endocr.Regul.25:10–13.PubMedGoogle Scholar
  50. 50.
    E. Ginsburg and B. K. Vonderhaar (1995). Prolactin synthesis and secretion by human breast cancer cells. Cancer Res.55:2591–2595.PubMedGoogle Scholar
  51. 51.
    J. A. Mol, E. van Garderen, G. R. Autteman, and A. Rijnberk(1996). New in sights in the molecular mechanism of progestin-induced proliferation of mouse epithelium: Induction of the local biosynthesis of growth hormone (GH) in the mammary glands of dogs, cats and humans. J.Steroid Biochem.Mol.Biol.57:67–71.PubMedGoogle Scholar
  52. 52.
    L. Hilakivi-Clarke, R. Clarke, and M. E. Lippman (1994). Perinatal factors increase breast cancer risk. Breast Cancer Res.Treat.31:273–284.PubMedGoogle Scholar
  53. 53.
    D. Trichopoulos (1990). Hypothesis: Does breast cancer originate in utero?(hhh) Lancet 355:939–940.Google Scholar
  54. 54.
    A. Ekbom, D. Trichopoulos, H. O. Adami, C. C. Hsieh, and S. J. Lan (1992). Evidence of prenatal influences on breast cancer risk. Lancet 340:1015–1018.PubMedGoogle Scholar
  55. 55.
    A. Ekbom, E. Thurfjell, C. C. Hsieh, D. Trichopoulos, and H. O. Adami (1995). Perinatal characteristics and adult mammographic patterns. Int.J.Cancer 61:177–180.PubMedGoogle Scholar
  56. 56.
    T. C. Rothschild, E. S. Boylan, R. E. Calhoon, and B. K. Vonderhaar (1987). Transplacental effects of diethylstilbestrolon mammary development and tumorigenesis in female ACIrats. Cancer Res.47:4508–4516.PubMedGoogle Scholar
  57. 57.
    A. T. Cowie (1949). The relative growth of mammary glands in normal, gonadectomized and adrenalectomized rats. J.Endocrinol 6:145-157.PubMedGoogle Scholar
  58. 58.
    C. S. Atwood, R. C. Hovey, J. P. Glover, G. Chepko, E. Ginsburg, W. G. Robison, and B. K. Vonderhaar (2000). Pro-gesteroneinduces side-branching of the ductal epitheliumin the mammary glands of peripubertal mice. J.Endocrinol.167:39–52.PubMedGoogle Scholar
  59. 59.
    Y. N. Sinha and H. A. Tucker (1966). Mammary gland growthof rats between 10 and 100 days of age. Am.J.Physiol.210:601–605.PubMedGoogle Scholar
  60. 60.
    J. F. Nelson, K. Karelus, L. S. Felicio, and T. E. Johnson (1990). Genetic influences on the timing of puberty in mice. Biol.Reprod.42:649–655.PubMedGoogle Scholar
  61. 61.
    D. S. Flux (1954). Growth of the mammary duct system in intact and ovariectomized mice of the chitrain. J.Endocrinol.11:223–237.PubMedGoogle Scholar
  62. 62.
    C. W. Daniel and G. Silberstein (1987). Postnatal developmentof the rodent mammary gland. In M. C. Neville and C. W. Daniel (eds.),(hhh) The Mammary Gland: Development, Regulation, and Function. Plenum, New York, pp. 3–36.Google Scholar
  63. 63.
    N. Zeps, J. M. Bentel, J. M. Papadimitriou, M. F. D'Antuono, and H. J. Dawkins (1998). Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth. Differentiation 62:221–226.PubMedGoogle Scholar
  64. 64.
    R. C. Humphreys (1999). Programmed cell death in the terminalend bud. J.Mammary Gland Biol.Neoplasia 4:213–220.PubMedGoogle Scholar
  65. 65.
    I. H. Russo and J. Russo (1998). Role of hormones in mammary cancer initiation and progression. J.Mammary GlandBiol.Neoplasia 3:49–61.Google Scholar
  66. 66.
    L. J. Faulkin Jr. and K. B. DeOme(1960). Regulation of growt hand spacing of gland elements in the mammary fat pad of theC3H mouse. J.Natl.Cancer Inst.24:953–963.PubMedGoogle Scholar
  67. 67.
    S. Ellis, F. G. Edwards, and R. M. Akers (1995). Morphologicaland histological analysis of the prepuberal ovine mammarygland. J.Dairy Sci.78(Suppl. 1):202.Google Scholar
  68. 68.
    T. L. Woodward, W. E. Beal, and R. M. Akers (1993). Cell interactions in initiation of mammary epithelial cell proliferation by oestradiol and progesterone in prepubertal heifers. J.Endocrinol.136:149–157.PubMedGoogle Scholar
  69. 69.
    S. Ellis, S. Purup, K. Sejrsen, and R. M. Akers (2000). Growth and morphogenesis of epithelial cell organoids from peripheral and medial parenchyma of prepubertal heifers. J.DairySci.83:952–961.Google Scholar
  70. 70.
    C. Wallace (1953). Observations on mammary developmentin calves and lambs. J.Agr.Sci.43:413–421.Google Scholar
  71. 71.
    R. R. Anderson (1975). Mammary gland growth in sheep. J.Anim.Sci.41:118–123.PubMedGoogle Scholar
  72. 72.
    I. D. Johnsson and I. C. Hart (1985). Pre-pubertal mammo genesis in the sheep. 1. The effects of level of nutrition on growth and mammary development in female lambs. Anim.Prod.41:323–332.Google Scholar
  73. 73.
    K. Sejrsen and S. Purup (1997). Influence of prepubertal feed-inglevel on milk yield potential of dairy heifers: A review. J.Anim.Sci.75:828–835.PubMedGoogle Scholar
  74. 74.
    A. Dabelow (1941). Der Entfaltungsmechanismus derMamma. II. Die postnatale entwicklung der menschlichenmilchdruse und ihre korrelationen. Morphol.J.85:361–416.Google Scholar
  75. 75.
    S. Nandi (1958). Endocrine control of mammary gland development and function in the C3H/HeCrgl mouse. J.Natl.Cancer Inst.21:1039–1063.PubMedGoogle Scholar
  76. 76.
    S. Z. Haslam (1988). Local versus systemically mediatedeffects of estrogen on normal mammary epithelial cell deoxyribonucleicacid synthesis. Endocrinology 122:860–867.PubMedGoogle Scholar
  77. 77.
    J. L. Fendrick, A. M. Raafat, and S. Z. Haslam (1998). Mammary gland growth and development from the postnatal period to postmenopause: Ovarian steroid receptor ontogenyand regulation in the mouse. J.Mammary Gland Biol.Neo-plasia 3:7–22.Google Scholar
  78. 78.
    G. Shyamala and A. Ferenczy (1984). Mammary fat pad maybe a potential site for initiation of estrogen action in normalmouse mammary glands. Endocrinology 115:1078–1081.PubMedGoogle Scholar
  79. 79.
    G. R. Cunha, P. Young, Y. K. Hom, P. S. Cooke, J. A. Taylor, and D. B. Lubahn (1997). Elucidation of a role for stromalsteroid hormone receptors in mammary gland growth and development using tissue recombinants. J.Mammary GlandBiol.Neoplasia 2:393–402.Google Scholar
  80. 80.
    M. I. Gallego, N. Binart, G. W. Robinson, R. Okagaki, K. T. Coschigano, J. Perry, J. J. Kopchick, T. Oka, P. A. Kelly, and L. Hennighausen (2001). Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects. Dev.Biol.229:163–175.PubMedGoogle Scholar
  81. 81.
    D. L. Kleinberg (1997). Early mammary development: Growth hormone and IGF-1.(hhh) J.Mammary Gland Biol.Neoplasia 2:49–57.PubMedGoogle Scholar
  82. 82.
    M. Feldman, W. Ruan, I. Tappin, R. Wieczorek, and D. L. Kleinberg (1999). The effect of GH on estrogen receptor expression in the rat mammary gland. J.Endocrinol.163:515–522.PubMedGoogle Scholar
  83. 83.
    T. L. Wood, M. M. Richert, M. A. Stull, and M. A. Allar (2000). The insulin-like growth factors (IGFs) and IGF binding proteins in postnatal development of murine mammary glands. J.Mammary Gland Biol.Neoplasia 5:31–42.PubMedGoogle Scholar
  84. 84.
    D. L. Hadsell and S. G. Bonnette (2000). IGFand insulin action in the mammary gland: Lessons from transgenic and knockout models. J.Mammary Gland Biol.Neoplasia 5:19–30.PubMedGoogle Scholar
  85. 85.
    J. P. Lydon, F. J. DeMayo, O. M. Conneely, and B. W. O'Malley(1996). Reproductive phenotypes of the progesterone receptor null mutant mouse. J.Steroid Biochem.Mol.Biol.56:67–77.PubMedGoogle Scholar
  86. 86.
    C. J. Ormandy, N. Binart, and P. A. Kelly (1997). Mammary gland development in prolactin receptor knockout mice. J.Mammary Gland Biol.Neoplasia 2:355–364.PubMedGoogle Scholar
  87. 87.
    C. Brisken, S. Kaur, T. Chavarria, N. Binart, R. L. Sutherland, R. A. Weinberg, P. A. Kelly, and C. J. Ormandy (1999). Prolactin controls mammary gland development via direct and indirect mechanisms. Dev.Biol.210:96–106.PubMedGoogle Scholar
  88. 88.
    C. Brisken, S. Park, T. Vass, J. P. Lydon, B. W. O'Malley, and R. A. Weinberg (1998). A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc.Natl.Acad.Sci.USA 95:5076–5081.PubMedGoogle Scholar
  89. 89.
    R. P. DiAugustine, R. G. Richards, and J. Sebastian (1997). EGF-related peptides and their receptors in mammary glanddevelopment. J.Mammary Gland Biol.Neoplasia 2:109–117.PubMedGoogle Scholar
  90. 90.
    S. Z. Haslam, L. J. Counterman, and K. A. Nummy (1993). Effects of epidermal growth factor, estrogen, and progestin onDNA synthesis in mammary cells(hhh) in vivo are determined by the developmental state of the gland. J.Cell.Physiol.155:72–78.PubMedGoogle Scholar
  91. 91.
    S. Coleman, G. B. Silberstein, and C. W. Daniel (1988). Ductalmorphogenesis in the mouse mammary gland: Evidence supporting a role for epidermal growth factor. Dev.Biol.127:304–315.PubMedGoogle Scholar
  92. 92.
    B. K. Vonderhaar (1987). Local effects of EGF, alpha-TGF, and EGF-like growth factors on lobuloalveolar development of the mouse mammary gland(hhh) in vivo. J.Cell.Physiol.132:581–584.PubMedGoogle Scholar
  93. 93.
    S. M. Snedeker, C. F. Brown, and R. P. Di Augustine (1991). Expression and functional properties of transforming growthfactor a and epidermal growth factor during mouse mammary gland ductal morphogenesis. Proc.Natl.Acad.Sci.USA 88:276–280.PubMedGoogle Scholar
  94. 94.
    L. G. Sheffield and C. W. Welsch (1987). Influence of subman dibular salivary glands on hormone responsiveness of mouse mammary glands. Proc.Soc.Exp.Biol.Med.186:368–377.PubMedGoogle Scholar
  95. 95.
    S. Colemanand C. W. Daniel (1990). Inhibition of mousemam-maryductal morphogenesis and down-regulation of the EGF receptor by epidermal growth factor. Dev.Biol.137:425–433.PubMedGoogle Scholar
  96. 96.
    K. L. Troyer and D. C. Lee (2001). Regulation of mouse mam-marygland development and tumorigenesis by the ERBBsignaling network. J.Mammary Gland Biol.Neoplasia 6:7–21.PubMedGoogle Scholar
  97. 97.
    J. V. Soriano, M. S. Pepper, L. Orci, and R. Montesano (1998). Roles of hepatocyte growth factor/scatter factor and transforming growth factor-beta 1 in mammary gland ductal morphogenesis. J.Mammary Gland Biol.Neoplasia 3:133–150.PubMedGoogle Scholar
  98. 98.
    C. W. Daniel, S. Robinson, and G. Silberstein (1996). The roleof TGF-¯ in patterning and growth of the mammary ductaltree. J.Mammary Gland Biol.Neoplasia 1:331–341.PubMedGoogle Scholar
  99. 99.
    S. Purup, K. Sejrsen, J. Foldager, and R. M. Akers (1993). Effect of exogenous bovine growth hormone and ovariectomyon prepubertal mammary growth, serum hormones andacute in-vitro proliferative response of mammary explantsfrom Holstein heifers. J.Endocrinol.139:19–26.PubMedGoogle Scholar
  100. 100.
    S. Ellis, T. B. McFadden, and R. M. Akers (1998). Prepubertalovine mammary development is unaffected by ovariectomy. Domest.Anim.Endocrinol.15:217–225.PubMedGoogle Scholar
  101. 101.
    A. V. Capuco, R. M. Akers, S. E. Ellis, and D. L. Wood (2000). Mammary growth in Holstein calves: Bromodeoxyuridine incorporation and steroid receptor localization. J.Dairy Sci.83(Suppl. 1):17.Google Scholar
  102. 102.
    R. C. Hovey, H. W. Davey, D. D. S. Mackenzie, and T. B. McFadden (1998). Ontogeny and epithelialstromal interactions regulate IGF expression in the ovine mammary gland. Mol.Cell.Endocrinol.136:139–144.PubMedGoogle Scholar
  103. 103.
    S. D. Berry, T. B. McFadden, R. E. Pearson, and R. M. Akers(2001). A local increase in the mammary IGF-I: IGFBP-3 ratiomediates the mammogenic effects of estrogen and growth hormone. Domest.Anim.Endocrinol.21:39–53.PubMedGoogle Scholar
  104. 104.
    M. D. Koff and K. Plaut (1995). Expression of transforming growth factor-alpha-like messenger ribonucleic acid transcripts in the bovine mammary gland. J.Dairy Sci.79:1903–1908.Google Scholar
  105. 105.
    F. Sinowatz, D. Schams, A. Plath, and S. Kolle (2000). Expression and localization of growth factors during mammary gland development. Adv.Exp.Med.Biol.480:19–25.PubMedGoogle Scholar
  106. 106.
    M. O. Thorner, J. Round, A. Jones, D. Fahmy, G. V. Groom,S. Butcher, and K. Thompson (1977). Serum prolactin andoestradiol levels at different stages of puberty. Clin.Endocrinol.(Oxf).7:463–468.Google Scholar
  107. 107.
    P. A. Lee, T. Xenakis, J. Winer, and S. Matsenbaugh (1976). Puberty in girls: Correlation of serum levels of gonadotropins, prolactin, androgens, estrogens, and progestins with physicalchanges. J.Clin.Endocrinol.Metab.43:775–784.PubMedGoogle Scholar
  108. 108.
    C. Ankarberg-Lindgren, M. Elfving, K. A. Wikland, and E. Norjavaara (2001). Nocturnal application of transdermalestradiol patches produces levels of estradiol that mimic those seen at the onset of spontaneous puberty in girls. J.Clin.Endocrinol.Metab.86:3039–3044.PubMedGoogle Scholar
  109. 109.
    A. Pertzelean, L. Yalon, R. Kauli, and Z. Laron (1982). A comparative study of the effect of oestrogen substitution therapy on breast development in girls with hypo-and hyperg-onadotrophichypogonadism. Clin.Endocrinol.(Oxf).16:359–368.Google Scholar
  110. 110.
    J. Russo, Y. F. Hu, I. D. C. G. Silva, and I. H. Russo (2001). Cancer risk related to mammary gland structure and development. Microsc.Res.Tech.52:204–223.PubMedGoogle Scholar
  111. 111.
    S. A. Bartow (1998). Use of the autopsy to study ontogeny and expression of the estrogen receptor gene in human breast. J.Mammary Gland Biol.Neoplasia 3:37–48.PubMedGoogle Scholar
  112. 112.
    E. Anderson, R. B. Clarke, and A. Howell (1998). Estrogen responsiveness and control of normal human breast proliferation. J.Mammary Gland Biol.Neoplasia 3:23–35.PubMedGoogle Scholar
  113. 113.
    J. Russo, X. Ao, C. Grill, and I. H. Russo (1999). Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res.Treat.53:217–227.PubMedGoogle Scholar
  114. 114.
    S. R. Rose, G. Municchi, K. M. Barnes, G. A. Kamp, M. M. Uriarte, J. L. Ross, F. Cassorla, and G. B. Cutler Jr. (1991). Spontaneous growth hormone secretion increases during puberty in normal girls and boys. J.Clin.Endocrinol.Metab.73:428–435.PubMedGoogle Scholar
  115. 115.
    K. J. Cullen, A. Allison, I. Martire, M. Ellis, and C. Singer(1992). Insulin-like growth factor expression in breast cancer epithelium and stroma. Breast Cancer Res.Treat.22:21–29.PubMedGoogle Scholar
  116. 116.
    N. Kawai, S. Kanzaki, S. Takano-Watou, C. Tada, Y. Yamanaka, T. Miyata, M. Oka, and Y. Seino (1999). Serum free insulin-like growth factor I (IGF-I), total IGF-I, and IGF-binding protein-3 concentrations in normal children and children with growth hormone deficiency. J.Clin.Endocrinol.Metab.84:82–89.PubMedGoogle Scholar
  117. 117.
    G. Silberstein and C. W. Daniel (1982). Glycosaminoglycans in the basal lamina and extra cellular matrix of the developing mouse mammary gland. Dev.Biol.90:215–222.PubMedGoogle Scholar
  118. 118.
    C. W. Daniel, J. J. Berger, P. Strickland, and R. Garcia(1984). Similar growth pattern of mouse mammary epithelium cultivated in collagen matrix(hhh) in vivo and(hhh) in vitro. Dev.Biol.104:57–64.PubMedGoogle Scholar
  119. 119.
    H. C. Mertani, T. Garcia-Caballero, A. Lambert, F. Gerard, C. Palayer, J. M. Boutin, B. K. Vonderhaar, M. J. Waters, P. E. Lobie, and G. Morel (1998). Cellular expression of growth hormone and prolactin receptors in human breast disorders. Int.J.Cancer 79:202–211.PubMedGoogle Scholar
  120. 120.
    R. C. Hovey, H. W. Davey, B. K. Vonderhaar, D. D. Mackenzie, and T. B. McFadden (2001). Paracrine action of keratinocyte growth factor (KGF) during ruminant mammo genesis. Mol.Cell.Endocrinol.181:47–56.PubMedGoogle Scholar
  121. 121.
    L. G. Nequin, J. Alvarez, and N. B. Schwartz (1979). Measurement of serum steroid and gonadotropin levels and uterine and ovarian variables throughout 4 day and 5 day estrouscycles in the rat. Biol.Reprod.20:659–670.PubMedGoogle Scholar
  122. 122.
    B. K. Vonderhaar (1988). Regulation of development of thenormal mammary gland by hormones and growth factors. In M. E. Lippman and R. B. Dickson (eds.),(hhh) Breast Cancer: Cellular and Molecular Biology. Kluwer Academic Publishers, Boston, pp. 251–266.Google Scholar
  123. 123.
    A. Lochter (1998). Plasticity of mammaryepithelia during normal development and neoplastic progression. Biochem.CellBiol.76:997–1008.Google Scholar
  124. 124.
    J. M. Williams and C. W. Daniel (1983). Mammary ductal elongation, differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev.Biol.97:274–290.PubMedGoogle Scholar
  125. 125.
    M. M. Richert, K. L. Schwertfeger, J. W. Ryder, and S. M. Anderson (2000). An atlas of mouse mammary gland development. J.Mammary Gland Biol.Neoplasia 5:227–241.PubMedGoogle Scholar
  126. 126.
    G. W. Robinson, R. A. McKnight, G. H. Smith, and L. Hennighausen (1995). Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development 121:2079–2090.PubMedGoogle Scholar
  127. 127.
    P. Schedin, T. Mitrenga, and M. Kaeck (2000). Estrous cycle regulation of mammary epithelial cell proliferation, differentiation and death in the Sprague-Dawley rat: A model for investigating the role of estrous cycling in mammarycarcinogenesis. J.Mammary Gland Biol.Neoplasia 5:211–225.PubMedGoogle Scholar
  128. 128.
    C. W. Turner and A. E. Gomez (1933). The normal devel-opmentof the mammary gland of the male and female albinomouse. Univ.Mo., Columbia Coll.Agric., Agric.Exp.Stn., Res.Bull.182:1–43.Google Scholar
  129. 129.
    K. P. Hummel, F. L. Richardson, and E. Fekete (1975). Anatomy. In E. L. Green (ed.),(hhh) Biology of the LaboratoryMouse. Dover Publications, New York, pp. 247–307.Google Scholar
  130. 130.
    J. E. Fata, V. Chaudhary, and R. Khokha (2001). Cellularturnover in the mammary gland is correlated with systemic levels of progesterone and not 17ß-estradiol during the estrouscycle. Biol.Reprod.65:680–688.PubMedGoogle Scholar
  131. 131.
    H. A. Cole (1934). The mammary gland of the mouse, during the oestrous cycle, pregnancy and lactation. Proc.R. Soc.Lond.B. Biol.Sci.114:136–161.Google Scholar
  132. 132.
    A.-C. Andres and R. Strange (1999). Apoptosis in the estrous and menstrual cycles. J.MammaryGland Biol.Neoplasia 4:221–228.Google Scholar
  133. 133.
    R. Dulbecco, M. Henahan, and B. Armstrong (1982). Cell types and morphogenesis in the mammary gland. Proc.Natl.Acad.Sci.USA 79:7346–7350.PubMedGoogle Scholar
  134. 134.
    Y. N. Sinha and H. A. Tucker (1969). Relationship of pituitary prolactin and LH to mammary and uterine growth of pubertal rats during the estrous cycle. Proc.Soc.Exp.Biol.Med.131:908–913.PubMedGoogle Scholar
  135. 135.
    R. E. Grahame and F. D. Bertalanffy (1972). Cell division in normal and neoplastic mammary gland tissue in the rat. Anat.Rec.174:1–8.PubMedGoogle Scholar
  136. 136.
    J. Foldager and K. Sejrsen (1987). Mammary gland development and milk production in dairy cows in relation to feeding and hormone manipulation during rearing. In(hhh) Cattle Produc-tionResearch: Danish Status and Perspectives. Landhushold-ningsselkabetsForlag, Copenhagen, pp. 102–116.Google Scholar
  137. 137.
    P. Monaghan, N. P. Perusinghe, P. Cowen, and B. A. Gusterson(1990). Peripubertal human breast development. Anat.Rec.226:501–508.PubMedGoogle Scholar
  138. 138.
    H. Vorherr (1974). Development of the female breast. In H. Vorherr (ed.),(hhh) The Breast. Academic Press, New York, pp. 1–18.Google Scholar
  139. 139.
    P. M. Vogel, N. G. Georgiade, B. F. Fetter, F. S. Vogel, and K. S. McCarty Jr. (1981). The correlation of histologic changes in the human breast with the menstrual cycle. Am.J.Pathol.104:23–34.PubMedGoogle Scholar
  140. 140.
    T. A. Longacre and S. A. Bartow (1986). A correlative mor-phologicstudy of human breast and endometrium in the menstrual cycle. Am.J.Surg.Pathol.10:382–393.PubMedGoogle Scholar
  141. 141.
    J. E. Ferguson, A. M. Schor, A. Howell, and M. W. J. Ferguson (1992). Changes in the extra cellular matrix of the normal human breast during the menstrual cycle. Cell TissueRes.268:167–177.Google Scholar
  142. 142.
    C. S. Potten, R. J. Watson, G. T. Williams, S. Tickle, S. A. Roberts, M. Harris, and A. Howell (1988). The effect of age and menstrual cycle upon proliferative activity of the normal human breast. Br.J.Cancer 58:163–170.PubMedGoogle Scholar
  143. 143.
    T. J. Anderson, D. J. P. Ferguson, and G. M. Raab (1982). Cell turnover in the “resting” human breast: Influence of parity, contraceptive pill, age and laterality. Br.J.Cancer 46:376–382.PubMedGoogle Scholar
  144. 144.
    D. K. Walmer, M. A. Wrona, C. L. Hughes, and K. G. Nelson (1992). Lactoferrin expression in the mouse reproductive tract during the natural estrous cycle: Correlation with circulating estradiol and progesterone. Endocrinology 131:1458–1466.PubMedGoogle Scholar
  145. 145.
    D. D. DeLeon, M. B. Zelinski-Wooten, and M. S. Barkely(1990). Hormonal basis of variation in oestrous cyclicity inselected strains of mice. J.Reprod.Fertil.89:117–126.PubMedGoogle Scholar
  146. 146.
    M. E. Lieberman, A. Barnea, S. Bauminger, A. Tsafriri, W. P. Collins, and H. R. Lindner (1975). LH effect on the pattern of steroidogenesis in cultured graafian follicles of the rat: Dependence on macromolecular synthesis. Endocrinology 96:1533–1542.PubMedGoogle Scholar
  147. 147.
    R. L. Butcher, W. E. Collins, and N. W. Fugo (1974). Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17ß throughout the 4-day estrous cycle of therat. Endocrinology 94:1704–1708.PubMedGoogle Scholar
  148. 148.
    P. S. Kalra and S. P. Kalra (1977). Temporal changes in thehypothalamic and serum luteinizing hormone-releasing hormone(LH-RH) levels and the circulating ovarian steroids during the rat oestrous cycle. Acta Endocrinol.(Copenhagen).85:449–455.Google Scholar
  149. 149.
    F. Bresciani (1968). Topography of DNA synthesis in the mammary gland of the C3H mouse and its control by ovarian hormones: An auto radio graphic study. Cell Tissue Kinet.1:51–63.Google Scholar
  150. 150.
    S. Z. Haslam (1989). The ontogeny of mouse mammary gland responsiveness to ovarian steroid hormones. Endocrinology 125:2766–2772.PubMedGoogle Scholar
  151. 151.
    S. Z. Haslam (1988). Progesterone effects on deoxyribonucleicacid synthesis in normal mouse mammary glands. Endocrinology 122:464–470.PubMedGoogle Scholar
  152. 152.
    H. Nagasawa and R. Yanai (1971). Increased mammary gland response to pituitary mammotropic hormones by estrogen in rats. Endocrinol.Jpn.18:53–56.Google Scholar
  153. 153.
    J. P. Lydon, F. J. DeMayo, C. R. Funk, S. K. Mani, A. R. Hughes, C. A. Montgomery Jr., G. Shyamala, O. M.Conneely, and B. W. O'Malley (1995). Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev.9:2266–2278.PubMedGoogle Scholar
  154. 154.
    T. N. Seagroves, J. P. Lydon, R. C. Hovey, B. K. Vonderhaar, and J. M. Rosen (2000). C/EBPß (CCAAT/enhancer binding protein) controls cell fate determination during mammary gland development. Mol.Endocrinol.14:359–368.PubMedGoogle Scholar
  155. 155.
    C. Brisken, A. Heineman, T. Chavarria, B. Elenbaas, J. Tan, S. K. Dey, J. A. McMahon, A. P. McMahon, and R. A Weinberg (2000). Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev.14:650–654.PubMedGoogle Scholar
  156. 156.
    N. Zeps, J. M. Bentel, J. M. Papadimitriou, and H. J. S. Dawkins (1999). Murine progesterone receptor expression in proliferating mammaryepithelial cells during normal pubertal development and adult estrous cycle: Association with ER®and ERß status. J.Histochem.Cytochem.47:1323–1330.PubMedGoogle Scholar
  157. 157.
    G. Shyamala, X. Yang, G. Silberstein, M. H. Barcellos-Hoff, and E. Dale (1998). Transgenic mice carrying an imbalance in the native ratio of A to B forms of progesterone receptor exhibit developmental abnormalities in mammary glands. Proc.Natl.Acad.Sci.USA 95:696–701.PubMedGoogle Scholar
  158. 158.
    G. Shyamala, X. Yang, R. D. Cardiff, and E. Dale (2000). Impact of progesterone receptor on cell-fate decisions during mammary gland development. Proc.Natl.Acad.Sci.USA 97:3044–3049.PubMedGoogle Scholar
  159. 159.
    N. D. Horseman (1999). Prolactin and mammary gland development. J.Mammary Gland Biol.Neoplasia 4:79–88.PubMedGoogle Scholar
  160. 160.
    B. K. Vonderhaar and A. E. Greco (1979). Lobuloalveolar development of mouse mammary glands is regulated by thyroid hormones. Endocrinology 104:409–418.PubMedGoogle Scholar
  161. 161.
    D. V. Singh and H. A. Bern (1969). Interaction between prolactin and thyroxine in mouse mammary gland lobuloalveolar development(hhh) in vitro. J.Endocrinol.45:579–583.PubMedGoogle Scholar
  162. 162.
    B. K. Vonderhaar (1982). Effect of thyroid hormones on mammary tumor induction and growth. In B. S. Leung (ed.),(hhh) Hormonal Regulation of Experimental Mammary Tumors.Vol.II: Peptides and Other Hormones. Eden Press, Montreal, Canada, pp. 138–154.Google Scholar
  163. 163.
    A. J. Hackett and H. D. Hafs (1969). Pituitary and hypothalamic endocrine changes during the bovine estrous cycle. J.Anim.Sci.28:531–536.PubMedGoogle Scholar
  164. 164.
    H. D. Hafs and D. T. Armstrong (1968). Corpus luteum growth and progesterone synthesis during the bovine estrous cycle. J.Anim.Sci.27:134–141.PubMedGoogle Scholar
  165. 165.
    D. Schams, I. Rüsse, E. Schallenberger, S. Prokopp, and J. S. D. Chan (1984). The role of steroid hormones, prolactin and placental lactogen on mammary gland development in ewes and heifers. J.Endocrinol.102:121–130.PubMedGoogle Scholar
  166. 166.
    W. J. Fulkerson, G. H. McDowell, and L. R. Fell (1975). Artificial induction of lactation in ewes: The role of prolactin. Aust.J.Biol.Sci.28:525–530.PubMedGoogle Scholar
  167. 167.
    D. Schams (1976). Hormonal control of lactation. In (hhh) Breast-Feedingand The Mother.Ciba Foundation Symposium. Elsevier/Excerpta Medica, New York, pp. 27–48.Google Scholar
  168. 168.
    S. C. Sud, H. A. Tucker, and J. Meites (1968). Estrogen-progesterone requirements for udder development in ovariectomized heifers. J.Dairy Sci.51:210–214.PubMedGoogle Scholar
  169. 169.
    L. G. Sheffield and I. S. Yuh (1988). Influence of epidermal growth factor on growth of bovine mammary tissue in athymicnude mice. Domest.Anim.Endocrinol.5:141–147.PubMedGoogle Scholar
  170. 170.
    C. Markopoulos, U. Berger, P. Wilson, J.-C. Gazet, and R. C. Coombes(1988). Oestrogen receptor content of normal breastcells and breast carcinomas throughout the menstrual cycle. Br.Med.J. 296:1349–1351.Google Scholar
  171. 171.
    G. Söderqvist, B. von Schoultz, E. Tani, and L. Skoog (1993). Estrogen and progesterone receptor content in breast epithelial cells from healthy women during the menstrual cycle. Am.J.Obstet.Gynecol.163:874–879.Google Scholar
  172. 172.
    E. Isaksson, E. von Schoultz, V. Odlind, G. Söderqvist, G. Csemiczky, K. Carlstrom, L. Skoog, and B. von Schoultz (2001). Effects of oral contraceptives on breast epithelial proliferation. Breast Cancer Res.Treat.65:163–169.PubMedGoogle Scholar
  173. 173.
    D. R. Mishell Jr. (1971). Serum gonadotropin and steroid patterns during the normal menstrual cycle. Am.J.Obstet.Gy-necol.111:60–65.Google Scholar
  174. 174.
    J. Uehara, A. C. Nazario, G. Rodrigues de Lima, M. J. Simoes,Y. Juliano, and L. H. Gebrim (1998). Effects of tamoxifen on the breast in the luteal phase of the menstrual cycle. Int.J.Gynaecol.Obstet.62:77–82.PubMedGoogle Scholar
  175. 175.
    I. J. Laidlaw, R. B. Clarke, A. Howell, W. M. C. Owen, C. S. Potten, and E. Anderson (1995). Proliferation of normal human breast tissue implanted in athymic nude mice is stimulated by estrogen and not progesterone. Endocrinology 136:164–171.PubMedGoogle Scholar
  176. 176.
    M. J. McManus and C. W. Welsch (1984). The effect of estrogen, progesterone, thyroxine, and human placental lactogenon DNA synthesis of human breast ductal epithelium mainta in edin athymic nude mice. Cancer 54:1920–1927.PubMedGoogle Scholar
  177. 177.
    B. von Schoultz, G. Söderqvist, M. Cline, E. von Schoultz, and L. Skoog (1996). Hormonal regulation of the normal breast. Maturitas 23(Suppl.):S23–S25.PubMedGoogle Scholar
  178. 178.
    L. J. Hofseth, A. M. Raafat, J. R. Osuch, D. R. Pathak, C. A. Slomski, and S. Z. Haslam (1999). Hormone replacement therapy with estrogen or estrogen plus medroxyprogesterone acetate is associated with increased epithelial proliferation in the normal postmenopausal breast. J.Clin.Endocrinol.Metab.84:4559–4565.PubMedGoogle Scholar
  179. 179.
    P. Mauvais-Jarvis, F. Kuttenn, and A. Gompel (1986). Antiestrogen action of progesterone in breast tissue. Breast CancerRes.Treat.8:179–187.Google Scholar
  180. 180.
    C. A. Adejuwon (1991). An analysis of the prolactin surge. Int.J.Gynaecol.Obstet.35:247–253.PubMedGoogle Scholar
  181. 181.
    M. J. McManus and C. W. Welsch (1981). Hormone induced ductal DNA synthesis of human breast tissues mainta in edin the athymic nude mouse. Cancer Res.41:3300–3305.PubMedGoogle Scholar
  182. 182.
    B. K. Vonderhaar (1999). Prolactin involvement in breast cancer. Endocr.-Relat.Cancer 6:389–404.PubMedGoogle Scholar
  183. 183.
    T. Kamalati, B. Niranjan, J. Yant, and L. Buluwela (1999). HGF/SF in mammary epithelial growth and morphogenesis: (hhh) In vitroand (hhh) in vivo models. J.MammaryGland Biol.Neoplasia 4:69–77.Google Scholar
  184. 184.
    D. G. Fernig, J. A. Smith, and P. S. Rudland (1991). Relationship of growth factors and differentiation in normal and neoplastic development of the mammary gland. Cancer Treat.Res.53:47–78.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Russell C. Hovey
    • 1
  • Josephine F. Trott
    • 1
  • Barbara K. Vonderhaar
    • 1
  1. 1.Molecular and Cellular Endocrinology Section, Basic Research Laboratory, Center for Cancer Research, NCINational Institutes of HealthBethesda

Personalised recommendations