, Volume 125, Issue 1, pp 89–102 | Cite as

AFLP in Triticum aestivum L.: patterns of genetic diversity and genome distribution

  • Samuel P. Hazen
  • Phillipe Leroy
  • Richard W. Ward


The amplified fragment length polymorphism (AFLP) procedure was applied to a diverse panel of wheat (Triticum aestivum L. em. Thell.) accessions and sixty-nine of the recombinant inbred lines (RILs) from the widely used genetic mapping population derived from the cross of Opata 85 and W7984. Most (76.8%) bands were monomorphic among T. aestivum accessions. The majority of bands monomorphic in T. aestivum also were present in the synthetic wheat parent (W7984). Ten primer pairs generated 153 polymorphic AFLP bands, 140 of which could be assigned to a chromosome location and were relatively evenly distributed on the genetic linkage map. AFLP loci in T. aestivum were distributed throughout the genome; they generally have only one detectable sequence variant; and they exhibit monogenic dominant mendelian inheritance. Frequencies of polymorphic bands in the germplasm sampled are in the range that enables informative cluster analyses as well as map-based diversity and association analysis studies. AFLP bands mapped to individual loci in the Opata 85/W7984 RIL population will frequently be polymorphic in other crosses or germplasm, irrespective of whether the band arises from the T. aestivum parent or the synthetic wheat parent.

AFLP genetic diversity wheat linkage map 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bai, G.H., F.L. Kolb, G. Shaner & L.L. Domier, 1999. Ampli-fied fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology 89: 343–348.PubMedGoogle Scholar
  2. Barrett, B.A. & K.K. Kidwell, 1998. AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci 38: 1261–1271.CrossRefGoogle Scholar
  3. Becker, J., P. Vos, M. Kuiper, F. Salamini, & M. Heun, 1995. Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet 249: 65–73.PubMedCrossRefGoogle Scholar
  4. Beer, S.C., Siripoonwiwat W., L. S. O'Donoughue, E. Souza, D. Matthews & M.E. Sorrells, 1997. Association between molecular markers and quantitative traits in an oat gerplasm pool: can we infer linkage? J Agr Genet 3.Google Scholar
  5. Bohn, M., H.F. Utz & A.E. Melchinger, 1999. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci 39: 228–237.CrossRefGoogle Scholar
  6. Boivin, K., M. Deu, J.-F. Rami, G. Trouche, & P. Hamon, 1999. Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98: 320–328.CrossRefGoogle Scholar
  7. Burkhamer, R.L., S.P. Lanning, R.J. Martens, J.M. Martin & L.E. Talbert, 1998. Predicting progeny variance from parental divergence in hard red spring wheat. Crop Sci 38: 243–248.CrossRefGoogle Scholar
  8. Cho, Y.G., S.R. McCouch, M. Kuiper, M.-R. Kang, J. Pot, J.T.M. Groenen & M.Y. Eun, 1998. Integrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.). Theor Appl Genet 97: 370–380.CrossRefGoogle Scholar
  9. Cnops, G., B. denBoer, A. Gerats, M. VanMontagu & M. VanLijsebettens, 1996. Chromosome landing at the Arabidopsis TORNAD01 locus using an AFLP-based strategy. Mol Gen Genet 253: 32–41.PubMedCrossRefGoogle Scholar
  10. Ellis, R.P., J.W. McNichol, E. Baird, A. Booth, P. Lawrence, B. Thomas & W. Powell, 1997. The use of AFLPs to examine genetic relatedness in barley. Mol Breeding 3: 359–369.CrossRefGoogle Scholar
  11. Hartl, L., V. Mohler, F.J. Zeller, S.L.K. Hsam & G. Schweizer, 1999. Identification of AFLP markers closely linked to the powdery mildew resistance genes Pm1c and Pm4a in common wheat (Triticum aestivum L.). Genome 42: 322–329.CrossRefGoogle Scholar
  12. Heun, M., R. SchaferPregl, D. Klawan, R. Castagna, M. Accerbi, B. Borghi & F. Salamini, 1997. Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278: 1312–1314.CrossRefGoogle Scholar
  13. Jaccard, P., 1901. Distribution de la flore alpine dans le Bassin des Dranes et dans quelques régions voisines. Bull Soc vand Sci Nat 37: 241–272.Google Scholar
  14. Jones, C.J., K.J. Edwards, S. Castaglione, M.O. Winfield, F. Sala, C. van deWiel, G. Bredemeijer, B. Vosman, M. Matthes, A. Daly, R. Brettschneider, P. Bettini, M. Buiatti, E. Maestri, A. Malcevschi, N. Marmiroli, R. Aert, G. Volckaert, J. Rueda, R. Linacero, A. Vazquez & A. Karp, 1997. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breeding 3: 381–390.CrossRefGoogle Scholar
  15. Keim, P., J.M. Schupp, S.E. Travis, K. Clayton, T. Zhu, L. Shi, A. Ferreira & D.M. Webb, 1997. A high-density soybean genetic map based on AFLP markers. Crop Sci 37: 537–543.CrossRefGoogle Scholar
  16. Law, J.R., P. Donini, R.M.D. Koebner, C.R. James & R.J. Cooke, 1998. DNA profiling and plant variety registration. III: The statistical assessment of distinctness in wheat using amplified fragment length polymorphisms. Euphytica 102: 335–342.CrossRefGoogle Scholar
  17. Lincoln, S., 1992. Constructing genetic maps with MAPMAKER 3.0b, 3rd edn. Whitehorse Institute Technical Report, Whitehouse Institute, Cambridge, Mass.Google Scholar
  18. Lu, Z.X., B. Sosinski, G.L. Reighard, W.V. Baird & A.G. Abbott, 1998. Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41: 199–207.CrossRefGoogle Scholar
  19. Ma, Z.Q. & N.L.V. Lapitan, 1998. A comparison of amplified and restriction fragment length polymorphism in wheat. Cereal Res Commun 26: 7–13.Google Scholar
  20. Mackill, D.J., Z. Zhang, E.D. Redona & P.M. Colowit, 1996. Level of polymorphism and genetic mapping of AFLP markers in rice. Genome 39: 969–977.PubMedGoogle Scholar
  21. Maheswaran, M., P.K. Subudhi, S. Nandi, J.C. Xu, A. Parco, D.C. Yang & N. Huang, 1997. Polymorphism, distribution, and segregation of AFLP markers in a doubled haploid rice population. Theor Appl Genet 94: 39–45.CrossRefPubMedGoogle Scholar
  22. Marino, C.L., J.C. Nelson, Y.H. Lu, M.E. Sorrells, P. Leroy, N.A. Tuleen, C.R. Lopes & G.E. Hart, 1996. Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39: 359–366.PubMedGoogle Scholar
  23. McCouch, S.R., G. Kochert, Z.H. Yu, Z.Y. Wang, G.S. Khush, W.R. Coffman & S.D. Tanksley, 1988. Molecular mapping of rice chromosomes. Theor Appl Genet 76: 815–829.CrossRefGoogle Scholar
  24. Menéndez, C.M., A.E. Hall & P. Gepts, 1997. A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theor Appl Genet 95: 1210–1217.CrossRefGoogle Scholar
  25. Milbourne, D., R. Meyer, J.E. Bradshaw, E. Baird, N. Bonar, J. Provan, W. Powell & R. Waugh, 1997. Comparison of PCRbased marker systems for the analysis of genetic relationships in cultivated potato. Mol Breeding 3: 127–136.CrossRefGoogle Scholar
  26. Miller, J.C. & S.D. Tanksley, 1990. Effect of different restriction enzymes, probe source, and probe length on detecting restriction fragment length polymorphism in tomato. Theor Appl Genet 80: 385–389.Google Scholar
  27. Murray, M.G. & W.F. Thompson, 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8: 4321–4325.PubMedGoogle Scholar
  28. Nelson, J.C., M.E. Sorrells, A.E. Van Deynze, Y.H. Lu, M. Atkinson, M. Bernard, P. Leroy, J.D. Faris & J.A. Anderson, 1995b. Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141: 721–731.PubMedGoogle Scholar
  29. Nelson, J.C., A.E. Van Deynze, E. Autrique, M.E. Sorrells, Y.H. Lu, S. Negre, M. Bernard & P. Leroy, 1995a. Molecular mapping of wheat: homoeologous group 3. Genome 38: 525–533.PubMedGoogle Scholar
  30. Nelson, J.C., A.E. Van Deynze, E. Autrique, M.E. Sorrells, Y.H. Lu, M. Merlino, M. Atkinson & P. Leroy, 1995c. Molecular mapping of wheat: homoeologous group 2. Genome 38: 516–524.PubMedGoogle Scholar
  31. Parker, G.D., K.J. Chalmers, A.J. Rathjen, & P. Langridge, 1998. Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theor Appl Genet 97: 238–245.CrossRefGoogle Scholar
  32. Paull, J.G., K.J. Chalmers, A. Karakousis, J.M. Kretschmer, S. Manning & P. Langridge, 1998. Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theor Appl Genet 96: 435–446.CrossRefGoogle Scholar
  33. Qi, X., P. Stam & P. Lindhout, 1998. Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor Appl Genet 96: 376–384.CrossRefGoogle Scholar
  34. Rohlf, F.J., 1997. NTSYS-pc: numerical taxonomy and multivariate analysis system. version 2.00. Exeter spftware, Setauket, New York.Google Scholar
  35. Röder, M.S., V. Korzun, K. Wendehake, J. Plaschke, M.H. Tixier, P. Leroy & M.W. Ganal, 1998. A microsatellite map of wheat. Genetics 149: 2007–2023.PubMedGoogle Scholar
  36. Schondelmaier, J., G. Steinrücken & C. Jung, 1996. Integration of AFLP markers into a linkage map of sugar beet (Beta vulgaris L). Plant Breeding 115: 231–237.CrossRefGoogle Scholar
  37. Shan, X., T.K. Blake & L.E. Talbert, 1999. Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet 98: 1072–1078.CrossRefGoogle Scholar
  38. Singh, S., T.S. Grewal, H. Singh, M. Sodhi, & H.S. Dhaliwal, 1999. Identification of amplified fragment length polymorphism markers associated with Karnal bunt (Neovossia indica) resistance in bread wheat. Indian J Agr Sci 69: 497–501.Google Scholar
  39. Staub, J.E., F.C. Serquen & M. Gupta, 1996. Genetic markers, map construction, and their application in plant breeding. Hortscience 31: 729–741.Google Scholar
  40. Talbert, L.E., N.K. Blake, P.W. Chee, T.K. Blake & G.M. Magyar, 1994. Evaluation of sequence-tagged-site PCR products as molecular markers in wheat. Theor Appl Genet 87: 789–794.CrossRefGoogle Scholar
  41. Tanksley, S.D., M.W. Granal, J.P. Prince, M.C. de Vicente, M.W. Bonierbale, P. Broun, T.M. Foulton, J.J. Giovannoni, S. Grandillo, G.B. Martin, R. Messeguer, J.C. Miller, L. Miller, A.G. Paterson, O. Pineda, M.S. Röder, R.A. Wing, W. Wu, N.D. Young, 1992. High-density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141–1160.PubMedGoogle Scholar
  42. van Eck, H.J., J. Rouppe van der Voort, J. Draaistra, P. van Zandvoort, E. van Enckevort, B. Segers, J. Peleman, E. Jacobsen, J. Helder, J. Bakker, 1995. The inheritance and chromosomal localization of AFLP markers in a non-inbred potato offspring. Mol Breeding 1: 397–410.CrossRefGoogle Scholar
  43. Van Deynze, A.E., J. Dubcovsky, K.S. Gill, J.C. Nelson, M.E. Sorrells, J. Dvorák, B.S. Gill, E.S. Lagudah, S.R. McCouch & R. Appels, 1995. Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38: 45–59.Google Scholar
  44. Voorrips, R.E., M.C. Jongerius & H.J. Kanne, 1997. Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor Appl Genet 94: 75–82.CrossRefPubMedGoogle Scholar
  45. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP - a new technique for DNA-fingerprinting. Nucleic Acids Res 23: 4407–4414.PubMedGoogle Scholar
  46. Vuylsteke, M., R. Mank, R. Antonise, E. Bastiaans, M.L. Senior, C.W. Stuber, A.E. Melchinger, T. Lubberstedt, X.C. Xia, P. Stam, M. Zabeau & M. Kuiper, 1999. Two high-density AFLP (R) linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99: 921–935.CrossRefGoogle Scholar
  47. Wang, Y.H., C.E. Thomas & R.A. Dean, 1997. A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) markers. Theor Appl Genet 95: 791–798.CrossRefGoogle Scholar
  48. Waugh, R., N. Bonar, E. Baird, B. Thomas, A. Graner, P. Hayes & W. Powell, 1997. Homology of AFLP products in three mapping populations of barley. Mol Gen Genet 255: 311–321.PubMedCrossRefGoogle Scholar
  49. Weber, J.L. & P.E. May, 1989. Polymorphisms based on length variations in blocks of (dC-dA).(dG-dT) repeats. Cytogenet Cell Genet 51: 1103–1104.Google Scholar
  50. Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic-markers. Nucleic Acids Res 18: 6531–6535.PubMedGoogle Scholar
  51. Young, W.P., J.M. Schupp & P. Keim, 1999. DNA methylation and AFLP marker distribution in the soybean genome. Theor Appl Genet 99: 785–790.CrossRefGoogle Scholar
  52. Zhu, J., M.D. Gale, S. Quarrie, M.T. Jackson & G.J. Bryan, 1998. AFLP markers for the study of rice biodiversity. Theor Appl Genet 96: 602–611.CrossRefGoogle Scholar
  53. Zhu, J.H., P. Stephenson, D.A. Laurie, W. Li, D. Tang & M.D. Gale, 1999. Towards rice genome scanning by map-based AFLP fingerprinting. Mol Gen Genet 261: 184–195.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Samuel P. Hazen
    • 1
    • 3
  • Phillipe Leroy
    • 2
  • Richard W. Ward
    • 1
  1. 1.Department of Crop and Soil SciencesMichigan State UniversityEast LansingU.S.A
  2. 2.UMR INRA-UBPAmélioration et Santé des PlantesClermont-Ferrand cedex 2France
  3. 3.Department of Energy Plant Research LaboratoryMichigan State UniversityEast LansingU.S.A

Personalised recommendations