Multi-Fractal Formalism for Quasi-Self-Similar Functions
- 59 Downloads
- 11 Citations
Abstract
The study of multi-fractal functions has proved important in several domains of physics. Some physical phenomena such as fully developed turbulence or diffusion limited aggregates seem to exhibit some sort of self-similarity. The validity of the multi-fractal formalism has been proved to be valid for self-similar functions. But, multi-fractals encountered in physics or image processing are not exactly self-similar. For this reason, we extend the validity of the multi-fractal formalism for a class of some non-self-similar functions. Our functions are written as the superposition of “similar” structures at different scales, reminiscent of some possible modelization of turbulence or cascade models. Their expressions look also like wavelet decompositions. For the computation of their spectrum of singularities, it is unknown how to construct Gibbs measures. However, it suffices to use measures constructed according the Frostman's method. Besides, we compute the box dimension of the graphs.
Preview
Unable to display preview. Download preview PDF.
REFERENCES
- 1.J. Lévy Véhel and R. Riedi, Fractional Brownian Motion and Data Traffic Modeling: The Other End of the Spectrum. Fractals in Engineering, J. Lévy Véhel, E. Lutton, and C. Tricot, eds. (Springer Verlag, 1997).Google Scholar
- 2.M. Holschneider and Ph. Tchamitchan, Régularité locale de la fonction “non-differentiable” de Riemann, Lecture Notes in Math. 1438:102-124 (1990).Google Scholar
- 3.S. Jaffard, Exposants de Hölder en des points donnés et coefficients d'ondelettes, C. R. Acad. Sci. Paris Sér. I Math. 308:79-81 (1989).Google Scholar
- 4.S. Jaffard, Pointwise smoothness, two-microlocalization and wavelet coefficients, Publ. Mat. 35:155-168 (1991).Google Scholar
- 5.J. P. Kahane and J. Peyrière, Sur certaines martingales de Benoit Mandelbrot (1979).Google Scholar
- 6.B. Mandelbrot, Intermittent turbulence in selfsimilar cascades: Divergence of high moments and dimension of the carrier, J. Fluid Mech. 62:331 (1974).Google Scholar
- 7.B. Mandelbrot, Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire, C. R. Acad. Sci. Paris, Sér. I Math. 278:289-292 (1974).Google Scholar
- 8.J. Barral, Moments, continuité et analyse multifractale des martingales de Mandelbrot, Probab. Theory Related Fields 113:535-570 (1999).Google Scholar
- 9.Y. Gagne, Etude expérimentale de l'intermittence et des singularités dans le plan complexe en turbulence pleinement développée, Thèse de l'Université de Grenoble (1987).Google Scholar
- 10.A. Arneodo, E. Bacry, and J. F. Muzy, Singularity spectrum of fractal signals from wavelet analysis: Exact results, J. Statist. Phys. 70:635-674 (1993).Google Scholar
- 11.U. Frisch and G. Parisi, Fully developped turbulence and intermittency, in Proc. Internat. School Phys. Enrico Fermi (North Holland, 1985), pp. 84-88.Google Scholar
- 12.S. Jaffard, Multifractal formalism for functions. Part 1: Results valid for all functions and Part 2: Selfsimilar functions, SIAM J. Math. Anal. 28:944-998 (1997).Google Scholar
- 13.Y. Meyer, Ondelettes et opérateurs I: Ondelettes (Hermann, Paris, 1990).Google Scholar
- 14.M. Ben Slimane, Formalisme Multifractal pour quelques généralisations des fonctions autosimilaires, C. R. Acad. Sci. Paris Sér. I Math. 324:981-986 (1997).Google Scholar
- 15.M. Ben Slimane, Multifractal formalism and anisotropic selfsimilar functions, Math. Proc. Cambridge. Philos. Soc. 124:329-363 (1998).Google Scholar
- 16.M. Ben Slimane, Multifractal formalism for selfsimilar functions expanded in singular basis, Appl. Comput. Harmon. Anal. 11:387-419 (2001).Google Scholar
- 17.M. Barnsley and A. Sloan, A better way to compress images, Byte Magazine:215-223 (1988).Google Scholar
- 18.C. Meneveau and K. Srenivanasan, Phys. Rev. Lett. 59:1424 (1987).Google Scholar
- 19.A. Arneodo, A. Argoul, E. Bacry, J. F. Muzy, and M. Tabard, Golden mean arithmetic in the fractal branching of diffusion-limitted aggreagates, Technical Report, Paul-Pascal Research Center, France (1991).Google Scholar
- 20.I. Daubechies and J. C. Lagarias, On the thermodynamic formalism for functions, Rev. Math. Phys. 6:1033-1070 (1994).Google Scholar
- 21.I. Daubechies, Private communication.Google Scholar
- 22.M. Ben Slimane, Multifractal formalism for selfsimilar functions under the action of nonlinear dynamical systems, Constr. Approx. J. 15:209-240 (1999).Google Scholar
- 23.P. Collet, J. Lebowitz, and A. Porzio, The dimension specrum of some dynamical systems, J. Statist. Phys. 47:609-644 (1987).Google Scholar
- 24.L. Olsen, A multifractal formalism, Adv. Math. 116:82-196 (1995).Google Scholar
- 25.D. A. Rand, The singularity spectrum f(a) for cookie-cutters, Ergodic Theory Dynam. Systems 9:527-541 (1989).Google Scholar
- 26.J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30:713-747 (1981).Google Scholar
- 27.G. Brown, G. Michon, and J. Peyrière, On the multifractal analysis of measures, J. Statist. Phys. 66:775-790 (1992).Google Scholar
- 28.F. Ben Nasr, Multifractal analysis of measures, C. R. Acad. Sci. Paris Sér. I Math. 319:807-810 (1994).Google Scholar
- 29.F. Ben Nasr, I. Bhouri, and Y. Heurtaux, A necessary condition and sufficient condition for a valid multifractal formalism, Prépublication d'Orsay, No. 58. To appear in Adv. Math. Google Scholar
- 30.Y. Meyer, Wavelets and Operators (Cambridge University Press, Cambridge, 1992).Google Scholar
- 31.J. Peyrière, Multifractal measures, Probabilistic and Stochastic Methods in Analysis, with Applications, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 372, pp. 175-186 (Kluwer Acad. Publ., Dordrecht, 1992).Google Scholar
- 32.P. Billingsly, Hausdorff dimension in probability theory, Illinois J. Math. 4:187-209 (1960).Google Scholar
- 33.S. Jaffard, On box dimension of graphs, C. R. Acad. Sci. Paris, Sér. I Math. 326:555-560 (1998).Google Scholar
- 34.S. Jaffard, On lacunary wavelet series, Ann. Appl. Probab. 10:313-329 (2000).Google Scholar
- 35.A. Arneodo, E. Bacry, S. Jaffard, and J. F. Muzy, Singularity spectrum of multifractal functions involving oscillating singularities, J. Fourier Anal. Appl. 4:159-174 (1998).Google Scholar
- 36.K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications (Wiley, Toronto, 1990).Google Scholar
- 37.A. Arneodo, E. Bacry, and J. F. Muzy, Random cascades on wavelet dyadic trees, J. Math. Phys. 39:4142-4164 (1998).Google Scholar