Skip to main content
Log in

Targeting Anti-Apoptotic Genes Upregulated by Androgen Withdrawal Using Antisense Oligonucleotides to Enhance Androgen- and Chemo-Sensitivity in Prostate Cancer

  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

The main obstacle to improved survival ofadvanced prostate cancer is our failure toprevent its progression to its lethal anduntreatable stage of androgen independence. New therapeutic strategies designed toprevent androgen-independent (AI)progression must be developed beforesignificant impact on survival can beachieved. Characterization of changes ingene expression profiles after androgenablation and during progression toandrogen-independence suggest that thevarious therapies used to kill neoplasticcells may precipitate changes in geneexpression that lead to the resistantphenotype. Castration-induced increases inantiapoptosis genes, Bcl-2 and clusterin,help create a resistant phenotype, whileantisense oligonucleotides can inhibitthese adaptive cell survival mechanisms andenhance both hormone and chemotherapy. Ongoing efforts are necessary to identify additionalmolecular pathways mediating AI progressionand chemoresistance, since complexities oftumor heterogeneity and adaptabilitydictate that optimal control over tumorprogression will require multi-targetsystemic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Denis L, Murphy GP: Overview of phase III trials on combined androgen treatment in patients with metastatic prostate cancer. Cancer 72: 3888–3895, 1993

    Google Scholar 

  2. Oh WK, Kantoff PW: Management of hormone refractory prostate cancer: current standards and future prospects. J Urol 160: 1220–1229, 1998

    Google Scholar 

  3. Hudes GR, Nathan F, Khater C, Haas N, Cornfield M, Giantonio B, Greenberg R, Gomella L, Litwin S, Ross E, Roethke S, McAleer C: Phase II trial of 96-hour paclitaxel plus oral estramustine phosphate in metastatic hormone-refractory prostate cancer. J Clin Oncol 15: 3156–3163, 1997

    Google Scholar 

  4. Petrylak DP, Macarthur RB, O'Connor J, Shelton G, Weitzman A, Judge T, England-Owen C, Zuech N, Pfaff C, Newhouse J, Bagiella E, Hetjan D, Sawczuk I, Benson M, Olsson C: Phase I trial of docetaxel with estramustine in androgen-independent prostate cancer. J Clin Oncol 17: 958–967, 1999

    Google Scholar 

  5. Smith DC, Esper D, Strawderman M, Redman B, Pienta KJ: Phase II trial of oral estramustine, oral etopside, and intravenous paclitaxel in hormone-refractory prostate cancer. J Clin Oncol 17: 1664–1671, 1999

    Google Scholar 

  6. Isaacs JT, Wake N, Coffey DS, Sandberg AA: Genetic instability coupled to clonal selection as a mechanism for progression in prostatic cancer. Cancer Res 42: 2353, 1982

    Google Scholar 

  7. Miyake H, Tolcher A, Gleave ME: Antisense Bcl-2 oligodeoxynucleotides delay progression to androgen-independence after castration in the androgen dependent Shionogi tumor model. Cancer Res 59: 4030–4034, 1999

    Google Scholar 

  8. Miyake H, Rennie P, Nelson C, Gleave ME, Miyake H, Rennie P, Nelson C, Gleave ME: Testosterone-repressed prostate message-2 (TRPM-2) is an antiapoptotic gene that confers resistance to androgen ablation in prostate cancer xenograft models. Cancer Res 60: 170–176, 2000

    Google Scholar 

  9. Bruchovsky N, Rennie PS, Coldman AJ, Goldenberg SL, To M, Lawson D: Effects of androgen withdrawal on the stem cell composition of the Shionogi carcinoma. Cancer Res 50: 2275–2282, 1990

    Google Scholar 

  10. Miyake H, Nelson C, Rennie P, Gleave ME: Overexpression of insulin-like growth factor binding protein-5 helps accelerate progression to androgen-independence in the human prostate LNCaP tumor model through activation of phosphatidylinositol 3′-kinase pathway. Endocrinology 141: 2257–2265, 2000

    Google Scholar 

  11. Sato N, Sadar MD, Bruchovsky N, Saatcioglu F, Rennie PS, Sato S, Lange PH, Gleave ME: Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between androgen receptor and AP-1c-Jun in the human prostate cancer cell Line LNCaP. J Bio Chem 272: (28) 17485–17494, 1997

    Google Scholar 

  12. Craft N, Shostak Y, Carey M, Sawyers C: A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nature Medicine 5: 280–285, 1999

    Google Scholar 

  13. Sherwood ER, Van Dongen JL, Wood CG, Liao S, Kozlowski JM, Lee C: Epidermal growth factor receptor activation in androgen-independent but not androgen-stimulated growth of human prostatic carcinoma cells. Br J Cancer 77(6): 855–861, 1998

    Google Scholar 

  14. Abreu-Martin MT, Chari A, Palladino AA, Craft NA, Sawyers CL: Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer. Mol Cell Biol 19: 5143–5154, 1999

    Google Scholar 

  15. Gleave ME, Hsieh, JT: Animal Models in Prostate Cancer. In: The Principles and Practice of Genitourinary Oncology; D. Raghavan, H. Scher, S. Leibel and P.H. Lange (eds.) Philadelphia: J.B. Lippincott Co; pp. 367–378, 1997

    Google Scholar 

  16. Horoszewicz J, Leong S, Chu T, Wajsman Z, Friedman M, Papsidero L, Kim U, Chai LS, Kakati S, Arya SK, Sandberg AA: The LNCaP cell line - a new model for studies on human prostatic carcinoma. Prog Clin Biol Res 37: 115–132, 1980

    Google Scholar 

  17. Gleave ME, Hsieh JT, Wu H-C, Chung LWK: Serum PSA levels in mice bearing human prostate LNCaP tumor are determined by tumor volume and endocrine and growth factors. Cancer Res 52: 1598–1605, 1992

    Google Scholar 

  18. Ellis WJ, Vessella RL, Buhler KR, Bladou F, True LD, Bigler SA, Curtis D, Lange PH: Characterization of a novel androgen-sensitive, prostate-specific antigen-producing prostatic carcinoma xenograft: LuCaP 23. Clin Cancer Res 2(6): 1039–1048, 1996

    Google Scholar 

  19. Amler LC, Agus DB, LeDuc C, Sapinoso ML, Fox WD, Kern S, Lee D, Wang V, Leysens M, Higgins B, Martin J, Gerald W, Dracopoli N, Cordon-Cardo C, Scher HI, Hampton GM: Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Cancer Res 60(21): 6134–6141, 2000

    Google Scholar 

  20. Nickerson T, Miyake H, Gleave ME, Pollak M: Castration-induced apoptosis of androgen-dependent Shionogi carcinoma is associated with increased expression of genes encoding insulin-like growth factor binding proteins. Cancer Res 59: 3392–3395, 1999

    Google Scholar 

  21. Miyaki H, Monia B, Gleave ME: Antisense Bcl-xL and Bcl-2 Oligodeoxynucleotides synergistically enhance taxol chemosensitivity and delay progression to androgen-independence after castration in the androgen dependent Shionogi tumor model. Int J Cancer 86: 855–862, 2000

    Google Scholar 

  22. Gleave ME, Tolcher A, Miyake H, Beraldi E, Goldie J: Progression to androgen-independence is delayed by antisense Bcl-2 oligodeoxynucleotides after castration in the LNCaP prostate tumor model. Clinical Cancer Res 5: 2891–2898, 1999

    Google Scholar 

  23. Budendorf L, Kolmer M, Kononen J, Koivisto P, Mousses S, Chen Y, Mahlamaki E, Schraml P, Moch H, Willi N, Elkahloun AG, Pretlow TG, Gasser TC, Mihatsch MJ, Sauter G, Kallioniemi OP: Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue arrays. JNCI 91: 1758–1764, 1999

    Google Scholar 

  24. Crooke ST. Therapeutic applications of oligonucleotides. Annu Rev Pharmacol Toxicol 32: 329–376, 1993

    Google Scholar 

  25. Saijo Y, Perlaky L, Wang H, Busch H: Pharmacokinetics, tissue distribution, and stability of antisense oligodeoxynucleotide phosphorothioate ISIS 3466 in mice. Oncol Res 6: 243–249, 1994

    Google Scholar 

  26. Monia BP, Johnston JF, Geiger T, Muller M, Fabbro D: Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nature Med 2: 668–675, 1996

    Google Scholar 

  27. Zieger A, Luedke GH, Fabbro D, Altman K-H, Stahel RA, Zangemeister-Wittke U: Induction of apoptosis in small-cell lung cancer cells by an antisense oligodeoxynucleotide targeting the Bcl-2 coding sequence. JNCI 89: 1027–1036, 1997

    Google Scholar 

  28. Jansen B, Schlagbauer-Wadl H, Brown BD, Bryan RN, van Elsas A, Muller M, Wolff K, Eichler HG, Pehamberger H: bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nature Med 4: 232–234, 1998

    Google Scholar 

  29. McKay RA, Miraglia LJ, Cummins LL, Owens SR, Sasmor H, Dean N: Characterization of a potent and specific class of antisense oligonucleotide inhibitor of human protein kinase Ca expression. JBC 274: 1715–1722, 1999

    Google Scholar 

  30. Sato T, Hanada M, Bodnig S, Ine S, Iwana N, Boise LH, Thompson C, Golemia E, Fong L, Wang H-G, Reed JC: Interactions among members of the bcl-2 protein family analysed with a yeast two-hybrid systems. Proc Nat Ass Sci USA 91: 9238–9242, 1994

    Google Scholar 

  31. McDonnell TJ, Troncoso P, Brisby SM, Logothetis CL, Chung LWK, Hsieh JT, Tu SM, Campbell ML: Expression of the protooncogene Bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 52: 6940–6944, 1992

    Google Scholar 

  32. Colombel M, Symmans F, Gil S, O'Toole KM, Choplin D, Benson M, Olsson CA, Korsmeyer S, Buttyan R: Detection of the apoptosis-suppressing oncoprotein Bcl-2 in hormone-refractory human prostate cancers. Am J Pathol 143: 390–400, 1993

    Google Scholar 

  33. Raffo AJ, Periman H, Chen MW, Streitman JS, Buttyan R: Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res 55: 4438–4445, 1995

    Google Scholar 

  34. Paterson R, Gleave M, Jone E, Zubovits J, Goldenberg SL, Sullivan LD: Immunohistochemical analysis of radical prostatectomy specimens after 8 months of neoadjuvant hormone therapy. Mol Urol 3: 277–286, 1999

    Google Scholar 

  35. Smith MR, Abubakr Y, Mohammad R, Xie T, Hamdan M, al-Katib A: Antisense oligodeoxyribonucleotide down-regulation of bcl-2 gene expression inhibits growth of the low-grade non-Hodgkin's lymphoma cell line WSU-FSCCL. Cancer Gene Ther 2: 207–212, 1995

    Google Scholar 

  36. Miyake H, Tolcher A, Gleave ME: Antisense Bcl-2 Oligodeoxynucleotides enhance taxol chemosensitivity and synergistically delays progression to androgen-independence after castration in the androgen dependent Shionogi tumor model. JNCI 92: 34–41, 2000

    Google Scholar 

  37. Gleave ME, Miyake H, Goldie J, Tolcher A: Use of antisense oligonucleotides to target anti-apoptotic genes to enhance androgen-and chemo-sensitivity and delay androgen-independent progression in prostate cancer. Urology 54: 36–46, 1999

    Google Scholar 

  38. Halder S, Basu A, Croce CM: Bcl2 is the guardian of microtubule integrity. Cancer Res 57: 229–233, 1997

    Google Scholar 

  39. Leung S, Miyake H, Zellweger T, Tolcher, A, Gleave ME: Synergistic chemosensitization and inhibition of progression to androgen independence by antisense Bcl-2 oligonucleotide and paclitaxel in the LNCaP tumour model Int J Cancer (in press, 2000)

  40. Webb A, Cunningham D, Cotter F, Clarke PA, di Stefano F, Ross P, Corbo M, Dziewanowska Z: Bcl-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 349: 1137–1141, 1997

    Google Scholar 

  41. Jansen B, Wacheck V, Heere-Ress E, Schlagbauer-Wadl H, Hoeller C, Lucas T, Hoermann M, Hollenstein U, Wolff K, Pehamberger H: Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 18;356(9243): 1728–1733, 2000

    Google Scholar 

  42. Chi K, Gleave M, Klasa R, Bryce C, Tolcher A: A phase I/Iia clinical trial of antisense Bcl-2 oligodeoxynucleotides plus mitoxanthrone in men with hormone refractory prostate cancer. JCO (abstract, ASCO May 2000).

  43. Steinberg J, Oyasu R, Lang S, Sintich S, Rademaker A, Lee C, Kozlowski JM, Sensibar JA: Intracellular levels of SGP-2 (Clusterin) correlate with tumor grade in prostate cancer. Clin Cancer Res 3: 1701–1711, 1997

    Google Scholar 

  44. Cervellera M, Raschella G, Santilli G, Tanno B, Ventura A, Mancini C, Sevignani C, Calabretta B, Sala A: Direct transactivation of the anti-apoptotic gene apolipoprotein J (clusterin) by B-MYB. J Biol Chem 14;275(28): 21055–21060, 2000

    Google Scholar 

  45. Kyprianou N, English HF, Davidson NE, Isaacs JT: Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation. Cancer Res 51: 162–166, 1991

    Google Scholar 

  46. Redondo M, Villar E, Torres-Munoz J, Tellez T, Morell M, Petito CK: Overexpression of clusterin in human breast carcinoma. Am J Pathol 157(2): 393–399, 2000

    Google Scholar 

  47. Wellmann A, Thieblemont C, Pittaluga S, Sakai A, Jaffe ES, Siebert P, Raffeld M: Detection of differentially expressed genes in lymphomas using cDNA arrays: identification of clusterin as a new diagnostic marker for anaplastic large-cell lymphomas. Blood 15;96(2): 398–404, 2000

    Google Scholar 

  48. Parczyk K, Pilarsky C, Rachel U, Koch-Brandt C: Gp80 (clusterin; TRPM-2) mRNA level is enhanced in human renal clear cell carcinomas. J Cancer Res Clin Oncol 120: 186–188, 1994

    Google Scholar 

  49. Calero M, Rostagno A, Matsubara E, Zlokovic B, Frangione B, Ghiso J: Apolipoprotein J (clusterin) and Alzheimer's disease. Microsc Res Tech 50: 305–315, 2000

    Google Scholar 

  50. Rosenberg ME, Silkensen J: Clusterin and the kidney. Exp Nephrol 3: 9–14, 1995

    Google Scholar 

  51. Montpetit ML, Lawless KR, Tenniswood M: Androgen-repressed messages in the rat ventral prostate. Prostate 8: 25–36, 1986

    Google Scholar 

  52. Kyprianou N, English HF, Isaacs JT: Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation. Cancer Res 50: 3748–3753, 1990

    Google Scholar 

  53. July LV, Akbari M, Zellweger T, Jones EC, Goldenberg SL, Gleave M: Clusterin expression is significantly enhanced in prostate cancer cells following androgen withdrawal therapy. Prostate 15,50(3): 179–188, 2002

    Google Scholar 

  54. Rosenberg ME, Silkensen J: Clusterin. Physiologic and pathophysiologic considerations. Int J Biochem Cell Biol 27, 633–645, 1995

    Google Scholar 

  55. Tenniswood MP, Guenette RS, Lakins J, Mooibroek M, Wong P, Welsh JE: Active cell death in hormone-dependent tissues. Cancer Metastasis Rev 11: 197–220, 1992

    Google Scholar 

  56. Danik M, Chabot JG, Mercier C, Benabid AL, Chauvin C, Quirion R, Suh M: Human gliomas and epileptic foci express high levels of a mRNA related to rat testicular sulfated glycoprotein 2, a purported marker of cell death. Proc Natl Acad Sci USA 88: 8577–8581, 1991

    Google Scholar 

  57. Connor J, Buttyan R, Olsson CA, D'Agati V, O'Toole K, Sawczuk IS: SGP-2 expression as a genetic marker of progressive cellular pathology in experimental hydronephrosis. Kidney Int 39: 1098–1103, 1991

    Google Scholar 

  58. Ho SM, Leav I, Ghatak S, Merk F, Jagannathan VS, Mallery K: Lack of association between enhanced TRPM-2/clusterin expression and increased apoptotic activity in sex-hormone-induced prostatic dysplasia of the Noble rat. Am J Pathol 153: 131–139, 1998

    Google Scholar 

  59. Schwochau GB, Nath KA, Rosenberg ME: Clusterin protects against oxidative stress in vitro through aggregative and nonaggregative properties. Kidney Int 53: 1647–1653, 1998

    Google Scholar 

  60. French LE, Sappino AP, Tschopp J, Schifferli JA: Distinct sites of production and deposition of the putative cell death marker clusterin in the human thymus. J Clin Invest 90: 1919–1925, 1992

    Google Scholar 

  61. Yang CR, Leskov K, Hosley-Eberlein K, Criswell T, Pink JJ, Kinsella TJ, Boothman DA: Nuclear clusterin/XIP8, an x-ray-induced Ku70-binding protein that signals cell death. Proc Natl Acad Sci USA 97: 5907–5912, 2000

    Google Scholar 

  62. Koch-Brandt C, Morgans C: Clusterin: a role in cell survival in the face of apoptosis? Prog Mol Subcell Biol 16: 130–149 (review), 1996

    Google Scholar 

  63. Wilson MR, Easterbrook-Smith SB: Clusterin is a secreted mammalian chaperone. Trends Biochem Sci 25: 95–98, 2000

    Google Scholar 

  64. Michel D, Chatelain G, North S, Brun G: Stress-induced transcription of the clusterin/apoJ gene. Biochem J 328: 45–50, 1997

    Google Scholar 

  65. Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR: Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274: 6875–6881, 1999

    Google Scholar 

  66. Sensibar JA, Sutkowski DM, Raffo A, Buttyan R, Griswold MD, Sylvester SR, Kozlowski JM, Lee C: Prevention of cell death induced by tumor necrosis factor in a LNCaP cells by overexpression of sulfated glycoprotein-2 (clusterin). Cancer Res 55: 2431–2437, 1995

    Google Scholar 

  67. Miyake H, Rennie P, Nelson C, Gleave ME: Acquisition of chemoresistant phenotype by overexpression of the antiapoptotic gene, testosterone-repressed prostate message-2 (TRPM-2), in prostate cancer xenograft models. Cancer Res 60: 2547–2554, 2000

    Google Scholar 

  68. Miyake H, Chi K, Gleave ME: Antisense TRPM-2 Oligodeoxynucleotides chemosensitize human androgen-independent PC-3 prostate cancer cells both in vitro and in vivo. Clinical Cancer Res 6: 1655–1663, 2000

    Google Scholar 

  69. Zellweger T, Chi K, Miyake H, Adomat H, Kiyama S, Skov K, Gleave M: Enhanced radiation sensitivity in prostate cancer by inhibition of the cell survival protein clusterin. Can J Urol 7(3): 1015, 2000

    Google Scholar 

  70. Agus DB, Scher HI, Higgins B, Fox WD, Heller G, Fazzari G, Cordon-Cardo C, Golde DW: Response of prostate cancer to anti-Her-2/neu antibody in androgen-dependent and-independent human xenograft models. Cancer Res 59: 4761–4764, 1999

    Google Scholar 

  71. Craft N, Shostak Y, Carey M, Sawyers CL: A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nature Medicine 5: 280–285, 1999

    Google Scholar 

  72. Yeh SY, Lin HK, Kang HY, Thin TH, Lin MF, Chang CS: From HER2/Neu signal cascade to androgen receptor and its coactivators: A novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci USA 96: 5458–5463, 1999

    Google Scholar 

  73. Culig Z, Hobisch A, Cronauer MV, Radmayr C, Trapman J, Hittmair A, Bartsch G, Klocker H: Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 54: 5474–5478, 1994

    Google Scholar 

  74. Nazareth LV, Weigel NL: Activation of the human androgen receptor through a protein kinase A signaling pathway. J Biol Chem 271: 19900–19907, 1996

    Google Scholar 

  75. Ikonen T, Palvimo JJ, Kallio PJ, Reinikainen P, Janne OA: Stimulation of androgen-regulated transactivation by modulators of protein phosphorylation. Endocrinology 135: 1359–1366, 1994

    Google Scholar 

  76. Abreu-Martin MT, Chari A, Palladino AA, Craft NA, Sawyers CL: Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer. Mol Cell Biol 19: 5143–5154, 1999

    Google Scholar 

  77. Kulik G, Klippel A, Weber MJ: Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol 17: 1595–1606, 1997

    Google Scholar 

  78. Li JP, DeFea K, Roth RA: Modulation of insulin receptor substrate-1 tyrosine phosphorylation by an Akt/phosphatidylinositol 3-kinase pathway. J Biol Chem 274: 9351–9356, 1999

    Google Scholar 

  79. Jones JI, Clemmons DR: Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16: 3–34, 1995

    Google Scholar 

  80. Cohen P, Peehl DM, Rosenfeld RG: The IGF axis in the prostate. Horm Met Res 26: 81–84, 1994

    Google Scholar 

  81. Grimberg A, Cohen P: Role of insulin-like growth factors and their binding proteins in growth control and carcinogenesis. J Cell Physiol 183: 1–9, 2000

    Google Scholar 

  82. Kiyama S, Zellweger T, Cox M, Gleave M: Antisense insulin-like growth factor binding protein-2 oligodeoxynucleotides inhibit progression to androgen-independence after castration in the human LNCaP tumor model via negative modulation of insulin-like growth factor-I action. J Urol (submitted).

  83. Thomas LN, Wright AS, Lazier CB, Cohen P, Rittmaster RS: Prostatic involution in men taking finasteride is associated with elevated levels of insulin-like growth factor-binding proteins (IGFBPs)-2,-4, and -5. Prostate 15;42(3): 203–210, 2000

    Google Scholar 

  84. Cohen P, Peehl DM, Graves HC, Rosenfeld RG: Biologic effects of PSA as an IGFBP-3 protease. J Endocrinol 142: 407–415, 1994

    Google Scholar 

  85. Miyake H, Pollak M, Nelson C, Gleave ME: Antisense insulin-like growth factor binding protein-5 oligodeoxynucleotides inhibit progression to androgen-independence after castration in the Shionogi tumor model via negative modulation of insulin-like growth factor-I action. Cancer Research 60: 3058–3064, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gleave, M.E., Zellweger, T., Chi, K. et al. Targeting Anti-Apoptotic Genes Upregulated by Androgen Withdrawal Using Antisense Oligonucleotides to Enhance Androgen- and Chemo-Sensitivity in Prostate Cancer. Invest New Drugs 20, 145–158 (2002). https://doi.org/10.1023/A:1015694802521

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015694802521

Navigation