Skip to main content
Log in

The perspectives of polygenic resistance in breeding for durable disease resistance

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Polygenic resistance is generally quantitative without clear race specific effects. With the onset of molecular markers technologies, the identification of chromosome regions that are involved in quantitative resistance has become feasible. These regions are designated quantitative trait loci (QTLs). The mapping of `major' QTLs can be independent of environment, season, year or race of the challenging pathogen. However, the detection of minor QTLs may be dependent on the `environment'. As QTLs are defined by the position on the genome and the quantitative effect on resistance, they are not informative about the mechanism of resistance. By comparing QTL with the loci that are involved in race specific resistance the coincidence of these loci may suggest a common mechanism. However, the histological characterisation of the resistance is more informative about the resistance mechanism. Estimations about the durability of polygenic, quantitative resistance are still academic as there is hardly any experience with large-scale usage of quantitative resistance over a longer period. The clearest example of non-durable resistance is race specific monogenic resistance that is associated with a hypersensitive response (HR). Hence, there is a great chance that polygenic resistance that is not associated with HR is more durable. In some pathosystems with a long experience with non-durable race specific HR genes, quantitative resistance offers a good alternative and marker-assisted breeding will facilitate the exploitation of these resistance for commercial purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Büschges, R., K. Hollricher, R. Panstruga, G. Simons, M. Wolter, A. Frijters, R. van Daelen, T. van der Lee, P. Diergaarde, J. Groenendijk, S. Toepsch, P. Vos, F. Salamini & P. Schulze-Lefert, 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88: 695–705.

    Article  PubMed  Google Scholar 

  • Caranta, C., V. Lefebvre & A. Palloix, 1997. Polygenic resistance of pepper to potyviruses consists of a combination of isolatespecific and broad-spectrum quantitative trait loci. Molec Plant Micr Interact 10: 872–878.

    CAS  Google Scholar 

  • Dangl, J.L. & J.D.G. Jones, 2001. Plant pathogens and integrated defence responses to infection. Nature 411: 826–833.

    Article  PubMed  CAS  Google Scholar 

  • Faris, J.D., W.L. Li, D.J. Liu, P.D. Chen & B.S. Gill, 1999. Candidate gene analysis of quantitative disease resistance in wheat. Theor Appl Genet 98: 219–225.

    Article  CAS  Google Scholar 

  • Fridman, E., T. Pleban & D. Zamir, 2000. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97: 4718–4723.

    Article  PubMed  CAS  Google Scholar 

  • Geoffroy, V., M. Sévignac, J.C.F. de Oliveira, G. Fouilloux, P. Skroch, P. Thoquet, P. Gepts, T. Langin, & M. Dron, 2000. Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance. Molec Plant Microb Interact 13: 287–296.

    Google Scholar 

  • Goodman, R.N. & A.J. Novacky, 1994. The hypersensitive reaction in plants to pathogens, a resistance phenomenon. APS Press, StPaul, Minnesota, 224 pp.

    Google Scholar 

  • Grandillo, S., H.M. Ku & S.D. Tanksley, 1999. Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99: 978–987.

    Article  CAS  Google Scholar 

  • Jansen, R.C., 1993. Interval mapping of multiple quantitative trait loci. Genetics 135: 205–211.

    PubMed  CAS  Google Scholar 

  • Jahoor, A., G. Backes, J. Jensen, M. Baum & U. Walter, 2000. Are quantitative resistance genes different than major race-specific resistance genes? Eighth International Barley Genetics Symposium, Adelaide, Australia, 22-27 October 2000, Volume I: pp. 53–55.

    Google Scholar 

  • Johal, D.S. & S.P. Briggs, 1992. Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258: 958–987.

    Google Scholar 

  • Johnson, R., 1984. A critical analysis of durable resistance. Ann Rev Phytopth 22: 309–330.

    Article  Google Scholar 

  • Joosten, M.H.A.J., T.J. Cozijnsen & P.J.G.M de Wit, 1994. Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature 367: 384–386.

    Article  PubMed  CAS  Google Scholar 

  • Keller, B. & C. Feuillet, 2000. Colinearity and gene density in grass genomes. Trends Plant Sci 5: 246–251.

    Article  PubMed  CAS  Google Scholar 

  • King, G.J., C. Maliepaard, J.R. Lynn, F.H. Alston, C.E. Durel, K.M. Evans, B. Griffon, F. Laurens, A.G. Manganaris, E. Schrevens, S. Tartarini & J. Verhaegh, 2000. Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor Appl Genet 100: 1074–1084.

    Article  Google Scholar 

  • Lander, E.S. & D. Botstein, 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

    PubMed  CAS  Google Scholar 

  • Leonards-Shippers, C., W. Gieffers, R. Schafer-Pregl, E. Ritter, S.J. Knapp, F. Salamini & C. Gebhardt, 1994. Quantitative resistance to Phytophthora infestans in potato: a case study for QTL mapping in an allogamous plant species. Genetics 137: 67–77.

    Google Scholar 

  • Li, J.X., S.B. Yu, C.G. Xu, Y.F. Tan, Y.J. Gao, X.H. Li & Q. Zhang. 2000. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid. Theor Appl Genet 101: 248–254.

    Article  CAS  Google Scholar 

  • Lindhout, P., W. Korta, M. Cislik, I. Vos & T. Gerlagh, 1989. Further identification of races of Cladosporium fulvum (Fulvia fulva) on tomato originating from the Netherlands, France and Poland. Neth J Plant Path 95: 143–148.

    Article  Google Scholar 

  • Liu, Y.S., L.H. Zhu, J.S. Sun & Y. Chen, 2001. Mapping QTLs for defective female gametophyte development in an intersubspecific cross in Oryza sativa L. Theor Appl Genet 102: 1243–1251.

    Article  CAS  Google Scholar 

  • Mills, D., H. Kunoh, N.T. Keen & S. Mayama (Eds.), 1996. Molecular aspects of pathogenicity and resistance: requirement for signal transduction. APS Press, St Paul, Minnesota, USA 294 pp.

    Google Scholar 

  • Monforte, A.J. & S.D. Tanksley, 2000. Development of a set of near isogenic and backcross lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: A tool for gene mapping and discovery. Genome 43: 803–813.

    Article  PubMed  CAS  Google Scholar 

  • Niks, R.E., 1982. Early abortion of colonies of leaf rust, Puccinia hordei, in partially resistant barley seedlings. Can J Bot 60: 714–723.

    Google Scholar 

  • Niks, R.E., U. Walther, H. Jaiser, F. Martínez, D. Rubiales, O. Andersen, K. Flath, P. Gymer, F. Heinrichs, R. Jonsson, L. Kuntze, M. Rasmussen & E. Richter, 2000. Resistance against barley leaf rust (Puccinia hordei) inWest-European spring barley germplasm. Agronomie 20: 769–782.

    Article  Google Scholar 

  • Niks, R.E., D. Rubiales, X. Qi & A.T.W. Kraakman, 2001. Molecular markers to characterise the effects of minor genes for resistance of barley to leaf rust fungi. Proc. Sustainable Systems of Cereal Crop Protection against fungal diseases as the way of reduction of toxin occurrence in food webs, July 2-6, 2001, Kromeríz, Czech Rep.

  • Parlevliet, J.E., 1978. Race-specific aspects of polygenic resistance of barley to leaf rust, Puccinia hordei. Neth J Plant Path 84: 121–126.

    Article  Google Scholar 

  • Parlevliet, J.E., 2002. Durability of resistance against fungal, bacterial and viral pathogens. Euphytica, this issue.

  • Parlevliet, J.E., W.H. Lindhout, A. van Ommeren & J. Kuiper, 1980. Level of partial resistance to leaf rust, Puccinia hordei, inWest-European barley and how to select for it. Euphytica 29: 1–8.

    Article  Google Scholar 

  • Parlevliet, J.E., M. Leijn & A. van Ommeren, 1985. Accumulating polygenes for partial resistance in barley to leaf rust, Puccinia hordei, II Field evaluation. Euphytica 34: 15–20.

    Article  Google Scholar 

  • Patrick, Z.A., E.A. Kerr & D.L. Bailey, 1971. Two races of Cladosporium fulvum new to Ontario and further studies of Cf-1 resistance in tomato cultivars. Can J Bot 49: 189–193.

    Article  Google Scholar 

  • Pflieger, S., V. Lefebvre, C. Caranta, A. Blattes, B. Goffinet & A. Palloix, 1999. Disease resistance gene analogs as candidates for QTLs involved in pepper-pathogen interactions. Genome 42: 1100–1110.

    Article  PubMed  CAS  Google Scholar 

  • Pflieger, S., A. Palloix, C. Caranta, A. Blattes & V. Lefebre, 2001. Defense response genes cosegregate with quantitative disease resistance loci in pepper. Theor Appl Genet, in press.

  • Pilet, M.L., G. Duplan, M. Archipiano, P. Barret, C. Baron, R. Horvais, X. Tanguy, M.O. Lucas, M. Renard & R. Delourme, 2001. Stability of QTL for field resistance to blackleg across two genetic backgrounds in oilseed rape. Crop Sci 41: 197–205.

    Article  CAS  Google Scholar 

  • Powell, W., M. Morgante, J.J. Doyle, J.W. McNicol, S.V. Tingey & A.J. Rafalski, 1996. Genepool variation in genus Glycine subgenus Soja revealed by polymorphic nuclear and chloroplast microsatellites. Genetics 144: 792–803.

    Google Scholar 

  • Qi, X. & P. Lindhout, 1997. Development of AFLP markers in barley. Mol Gen Genet 254: 330–336.

    Article  PubMed  CAS  Google Scholar 

  • Qi, X., P. Stam & P. Lindhout, 1998a. Use of locus specific AFLP markers to construct a high-density molecular map in barley. Theor Appl Genet 96: 376–384.

    Article  CAS  Google Scholar 

  • Qi, X., R.E. Niks, P. Stam & P. Lindhout, 1998b. Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theor Appl Genet 96: 1205–1215.

    Article  CAS  Google Scholar 

  • Qi, X., G. Jiang, W. Chen, R.E. Niks, P. Stam & P. Lindhout, 1999. Isolate-specific QTLs for partial resistance to Puccinia hordei in barley. Theor Appl Genet 99: 977–884.

    Article  Google Scholar 

  • Qi, X., F. Fufa, D. Sijtsma, R.E. Niks, P. Lindhout & P. Stam, 2000. The evidence for abundance of QTLs for partial resistance to Puccinia hordei on the barley genome. Mol Breed 6: 1–9.

    Article  CAS  Google Scholar 

  • Rubiales, D. & R.E. Niks, 1995. Characterization of Lr34, a major gene conferring nonhypersensitive resistance to wheat leaf rust. Plant Disease 79: 1208–1212.

    Article  Google Scholar 

  • Stam, P., 1993. Construction of integrated genetic maps by means of a new computer package: JoinMap. Plant J 3: 739–744.

    Article  CAS  Google Scholar 

  • Takken, F.L.W., C. Thomas, M.H.A.J. Joosten, C. Golstein, N. Westerink, J. Hille, H.J. Nijkamp, P.J.G.M. de Wit & J.D.G. Jones, 1999. A second gene at the tomato Cf-4 locus confers resistance to Cladosporium fulvum through recognition of a novel avirulence determinant. Plant J 20: 279–288.

    PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative, 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.

    Article  Google Scholar 

  • Thomas, C.M., J.D.G. Jones, M. Parniske, K. Harrison, P.J. Balint-Kurti, K. Hatzixanthis & J.D.G. Jones, 1997. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9: 2209–2224.

    Article  PubMed  CAS  Google Scholar 

  • Utz, H.F., A.E. Melchinger & C.C. Schon, 2000. Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154: 1839–1849.

    PubMed  Google Scholar 

  • Van Berloo, R & P. Lindhout, 2000. Mapping disease resistance genes in tomato. Proceedings International Symposium on the Biotechnology Application in Horticultural Crops, Beijing, China September 4-8, 2000, in press.

  • Van der Plank, J.E., 1963. Plant diseases: epidemics and control. Academic Press, New York/London, 349 pp.

    Google Scholar 

  • Van Eck, H.J., J.M.E. Jacobs, P. Stam, J. Ton, W.J. Stiekema & E. Jacobsen, 1994. Multiple alleles for tuber shape in diploid potato detected by qualitative and quantitative genetic analysis using RFLPs. Genetics 137: 303–309.

    PubMed  CAS  Google Scholar 

  • Van Heusden, A.W., M. Koornneef, R.E. Voorrips, W. Brüggeman, G. Pet, R. Vrielink-van Ginkel, X. Chen & P. Lindhout, 1999. Three QTLs from Lycopersicum peruvianum confer a high level of resistance to Clavibacter michiganensis ssp. Michiganensis. Theor Appl Genet 99: 1068–1074.

    Article  CAS  Google Scholar 

  • Van Ooijen, J.W., 1992. Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84: 803–811.

    CAS  Google Scholar 

  • Van Ooijen, J.W., 1999. LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83: 613–624.

    Article  PubMed  Google Scholar 

  • Van Ooijen, J.W. & C. Maliepaard, 1996. MapQTL version 3.0: Software for the Calculation of QTL Position on Genetic Maps. CPRO-DLO, Wageningen.

    Google Scholar 

  • Virk, P.S., B.V. Ford-Lloyd, M.T. Jackson, H.S. Pooni, T.P. Clemeno & H.J. Newbury, 1996. Predicting quantitative variation within rice germplasm using molecular markers. Heredity 76: 296–304.

    Google Scholar 

  • Voorrips, R.E., M.C. Jongerius & H.J. Kanne, 1997. Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor Appl Genet 94: 75–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindhout, P. The perspectives of polygenic resistance in breeding for durable disease resistance. Euphytica 124, 217–226 (2002). https://doi.org/10.1023/A:1015686601404

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015686601404

Navigation