Advertisement

Journal of Intelligent and Robotic Systems

, Volume 34, Issue 2, pp 135–154 | Cite as

A Genetic Algorithm for Mobile Robot Localization Using Ultrasonic Sensors

  • Luis Moreno
  • Jose M. Armingol
  • Santiago Garrido
  • Arturo de la Escalera
  • Miguel A. Salichs
Article

Abstract

A mobile robot requires the perception of its local environment for position estimation. Ultrasonic range data provide a robust description of the local environment for navigation. This article presents an ultrasonic sensor localization system for autonomous mobile robot navigation in an indoor semi-structured environment. The proposed algorithm is based upon an iterative non-linear filter, which utilizes matches between observed geometric beacons and an a-priori map of beacon locations, to correct the position and orientation of the vehicle. A non-linear filter based on a genetic algorithm as an emerging optimization method to search for optimal positions is described. The resulting self-localization module has been integrated successfully in a more complex navigation system. Experiments demonstrate the effectiveness of the proposed method in real world applications.

mobile robots localization ultrasonic sensors genetic algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aidala, V. J.: 1979. Kalman filter behaviour in bearings-only tracking applications, IEEE Transactions on Aerospace and Electronic Systems, AES-15(1), 29–39, January.Google Scholar
  2. Bar-Shalom, Y. and Fortmann, T. E.: 1988. Tracking and Data Association, Academic Press.Google Scholar
  3. Betke, M. and Gurvits, L.: 1997. Mobile robot localization using landmarks, IEEE Transactions on Robotics and Automation 13(2), 251–263.Google Scholar
  4. Borenstein, J. and Feng, L.: 1996. Measurement and correction of systematic odometry errors in mobile robots, IEEE Transactions on Robotics and Automation 12.Google Scholar
  5. Chen, M. and Zalzala, A.: 1995. Safety considerations in the optimization of paths for mobile robots using genetic algorithms, in: Proceedings of First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, pp. 299–304.Google Scholar
  6. Chong K. and Kleeman L.: 1992. Accurate odometry and error modelling for a mobile robot, in: Proceedings of the 1992 IEEE International Conference on Robotics and Automation, NewMexico, pp. 2783–2788.Google Scholar
  7. Dellaert, F., Fox, D., Burgard, W., and Thrun, S.: 1999. Monte Carlo Localization for Mobile Robots, in: Proceedings of the 1999 International Conference on Robotics and Automation, pp. 1322–1328.Google Scholar
  8. Dennis, J. E. and Schnabel, R. B.: 1996. Numerical Methods for Unconstrained Optimization and Nonlinear Equations, SIAM Classics in Applied Mathematics.Google Scholar
  9. D'Orazio, T., Lovergine, F. P., Ianigro, M., Stella, E., and Distante, A.: 1994. Mobile robot position determination using visual landmarks, IEEE Transactions on Industrial Electronics 41(6), 654–662.Google Scholar
  10. Escalera, A., Moreno, L., Salichs, M. A., and Armingol, J. M.: 1996. Continuous mobile robot localization by using structured light and a geometric map, International Journal of Systems Science 27(8), 771–782.Google Scholar
  11. Garrido, S., Moreno, L., and Salichs, M. A.: 1998. Non linear on line identification of dynamic systems with restricted genetic optimization, in: Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing EUFIT, pp. 423–428.Google Scholar
  12. Garrido, S. and Moreno, L.: 2001. Learning adaptive parameters with restricted genetic optimization, in: Bio-inspired Applications of Connectionism: 6th International Work-Conference on Artifical and Natural Neural Networks, IWANN2001, Springer-Verlag, pp. 612–620.Google Scholar
  13. Goldberg, D. E.: 1989. Genetic Algorithm in Search, Optimization, and Machine Learning, Addison-Wesley.Google Scholar
  14. Han, M. and Rhee, S.: 1994. Navigation control for a mobile robot, Journal of Robotics Systems 11(3), 169–179.Google Scholar
  15. Hein, C. and Meystel, A.: 1994. A genetic technique for robotic trajectory planning, Telematics and Informatics 11, 351–364.Google Scholar
  16. Kang, D., Hashimoto, H., and Harashima, F.: 1995. Path generation for mobile robot navigation using genetic algorithm, in: Proceedings of the 1995 IEEE IECON. First International Conference on Industrial Electronics, Control and Instrumentation, Vol. 1, pp. 167–172.Google Scholar
  17. Kalos, M. H. and Whitlock, P. A.: 1986. Monte Carlo Methods. Volume I: Basics, Wiley.Google Scholar
  18. Leonard, J. J. and Durrant-White, H. F.: 1992. Directed Sonar Sensing for Mobile Robot Navigation, Kluwer Acad. Publ.Google Scholar
  19. Potvin, J., Duhamel, C., and Guertin, F.: 1996. A genetic algorithm for vehicle routing with backhauling, Applied Intelligence 6, 345–355.Google Scholar
  20. Ricotti, M. and Liotta, A.: 1995. Real time landmarks detection for the mobile robot PARIDE, in: Proceedings of the SPIE, Vol. 2423, pp. 60–71.Google Scholar
  21. Salichs, M. A., Armingol, J. M., Moreno, L. E., and De la Escalera, A.: 1999. Localization system for mobile robots in indoor environments, Integrated Computer-Aided Engineering 6, 303–318.Google Scholar
  22. Thrun, S., Fox, D., Burgard, W., and Dellaert, F.: 2001. Robust Monte Carlo localization for mobile robots, Artificial Intelligence 128, 99–141.Google Scholar
  23. Triggs, B.: 1994. Model-based sonar localization for mobile robots, Robotics and Autonomous Systems 12, 173–186.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Luis Moreno
    • 1
  • Jose M. Armingol
    • 1
  • Santiago Garrido
    • 1
  • Arturo de la Escalera
    • 1
  • Miguel A. Salichs
    • 1
  1. 1.Departament of Systems Engineering and AutomationUniversidad Carlos III de MadridLeganés, MadridSpain

Personalised recommendations