Skip to main content
Log in

Implicit Convex Polygons

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

Convex polygons in the plane can be defined explicitly as an ordered list of vertices, or given implicitly, for example by a list of linear constraints. The latter representation has been considered in several fields such as facility location, robotics and computer graphics. In this paper, we investigate many fundamental geometric problems for implicitly represented polygons and give simple and fast algorithms that are easy to implement. We uncover an interesting partition of the problems into two classes: those that exhibit an Ω(nlog n) lower bound on their complexity, and those that yield O(n) time algorithms via prune-and-search methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aggarwal, A., Guibas, L. J., Saxe, J. and Shor, P.: A linear time algorithm for computing the Voronoi diagram of a convex polygon, In: Proc. 19th Ann. ACM Sympos. Theory Comput.., 1987, pp. 39–45.

  2. Ben-Or, M.: Lower bounds for algebraic computation trees, In: Proc. 15th Ann. Sympos. Theory Comput., 1983, pp. 80–86.

  3. Bhattacharya, B. and Toussaint, G.: Efficient algorithms for computing the maximum distance between two finite planar sets, J. Algorithms 4 (1983), 121–136.

    Google Scholar 

  4. Blum, M., Floyd, R. W., Pratt, V., Rivest, R. L. and Tarjan, R. E.: Time bounds for selection, J. Comput. System. Sci. 7 (1973), 448–461.

    Google Scholar 

  5. Dharmadhikari, S. W. and Jogdeo, K.: A characterization of convexity and central symmetry for planar polygonal sets, Israel J. Math. 15 (1973), 356–366.

    Google Scholar 

  6. Drezner, Z. (ed.): Facility Location: A Survey of Applications and Methods, Springer Ser. Oper. Res., Springer-Verlag, New York, 1995.

    Google Scholar 

  7. Dyer, M. E.: Linear time algorithms for two-and three-variable linear programs, SIAM J. Comput. 13 (1984), 31–45.

    Google Scholar 

  8. Dyer, M. E.: On a multidimensional search technique and its application to the Euclidean onecentre problem, SIAM J. Comput. 15 (1986), 725–738.

    Google Scholar 

  9. Haunold, P., Grumbach, S., Kuper, G. and Lacroix, Z.: Linear constraints: Geometric objects represented by inequalities, In: Proc. Internat. Conf. COSIT '97, Spatial Information Theory, A Theoretical Basis for GIS, 1997, pp. 429–440.

  10. Hoare, C. A. R.: Algorithm 63 (partition) and algorithm 65 (find), Comm. ACM 4(7) (1961), 321–322.

    Google Scholar 

  11. Houle, M. E. and Toussaint, G. T.: Computing the width of a set, IEEE Trans. Pattern Anal. Mach. Intell. 10 (1988), 761–765.

    Google Scholar 

  12. Hurtado, F., Sacristán, V. and Toussaint, G.: Some constrained minimax and maximin location problems, Stud. Locational Anal. 15 (2000), 17–35.

    Google Scholar 

  13. Kirkpatrick, D. G. and Seidel, R.: The ultimate planar convex hull algorithm, SIAM J. Comput. 15 (1986), 287–299.

    Google Scholar 

  14. Lee, D. T. and Wu, Y. F.: Geometric complexity of some location problems, Algorithmica 1 (1986), 193–211.

    Google Scholar 

  15. Liang, Y. and Barsky, B.: A new concept and method for line clipping, ACM Trans. Graphics 3(1) (1984), 1–22.

    Google Scholar 

  16. Matoušek, J., Sharir, M. and Welzl, E.: A subexponential bound for linear programming, Algorithmica 16 (1996), 498–516.

    Google Scholar 

  17. Megiddo, N.: Linear-time algorithms for linear programming in R 3 and related problems, SIAM J. Comput. 12 (1983), 759–776.

    Google Scholar 

  18. Megiddo, N.: Linear programming in linear time when the dimension is fixed, J. ACM 31 (1984), 114–127.

    Google Scholar 

  19. Preparata, F. P. and Shamos, M. I.: Computational Geometry: An Introduction, Springer-Verlag, New York, 1985.

    Google Scholar 

  20. Toussaint, G.: Solving geometric problems with rotating calipers, MELECON, Greece, 1983.

    Google Scholar 

  21. Toussaint, G. and McAlear, M. A.: A simple O(n log n) algorithm for finding the maximum distance between two finite planar sets, Pattern Recogn. Lett. 1 (1982), 21–24.

    Google Scholar 

  22. Welzl, E.: LP with small d - algorithms and applications, Manuscript, 1994.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, F., Hurtado, F., Ramaswami, S. et al. Implicit Convex Polygons. Journal of Mathematical Modelling and Algorithms 1, 57–85 (2002). https://doi.org/10.1023/A:1015626820950

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015626820950

Navigation