Skip to main content
Log in

Microbial community analysis by FISH for mathematical modelling of selective enrichment of gel-entrapped nitrifiers obtained from domestic wastewater

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Nitrifying activated sludge from natural domestic sewage was entrapped in hydrogel beads, which were subsequently enriched for nitrifiers in a continuous stirred tank reactor (CSTR). Fluorescently labelled, 16S rRNA-targeted oligonucleotide probes specific for ammonia and nitrite oxidisers were used in combination with DAPI staining to monitor the selectivity of the enrichment process. The growth of both nitrifying and heterotrophic bacteria was more pronounced in the periphery of the beads, leading to a biofilm-like stratification of the biomass during the enrichment. Quantitatively, the relative number of nitrifiers increased from 20% immediately after immobilisation up to 64% after 30 days, but decreased again due to extensive heterotrophic growth. These changes were accompanied by an increase in nitrifying activity for about 30 days, whereupon it reached a stable level. This selective enrichment was mathematically modelled by applying finite difference techniques to the diffusion-reaction mass balances of all soluble substrates relevant in the nitrification process. To model biomass growth and spreading, balanced by both decay and detachment at the surface of the beads, the differential methods were combined with a descrete cellular automaton approach. The spatially two-dimensional model was used to calculate radial concentration profiles within a gel bead, as well as to estimate the corresponding total activity of the reactor. Qualitatively, this model could simulate all essential aspects observed experimentally. However, more and better population data as well as independent estimates of decay and hydrolysis rates are needed to refine and verify the quantitative model. In conclusion, even in the absence of an external carbon source and with excess ammonium, it was only possible to obtain a moderate enrichment of nitrifying cells compared to heterotrophs. Under long-term cultivation, the biofilm-like structure developed in the outer gel layers led to a vigorous competition between auto- and heterotrophs for space, and thereby, access to oxygen. FISH analysis in combination with mathematical modelling constitute a suitable toolbox for analysing the population dynamics and biocatalytic performance of such an ecosystem based on lithoautotrophic primary production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann, R. I., K. Ludwig & K.-H. Schleifer, 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbial Rev. 59: 143–169.

    Google Scholar 

  • Amann, R., H. Lemmer & M. Wagner, 1998. Monitoring the community structure of wastewater treatment plants: a comparison of old and new techniques. FEMS Microbiol. Ecol. 25: 205–215.

    Google Scholar 

  • Atlas, R. M. & R. Bartha, 1998. Quantitative ecology: numbers, biomass, and activities. In Atlas, R. M. & R. Bartha, Microbial Ecology: Fundamentals and Applications, Benjamin/Cummings Science Publishing, Menlo Park CA: 218–263.

    Google Scholar 

  • Burlage, R. S., R. M. Atlas, D. Stahl, G. Geesey & G. Sayler (eds), 1998. Techniques in Microbial Ecology. Oxford University Press, New York: 468 pp.

    Google Scholar 

  • Charaklis, W. G. & K. C. Marshall (eds), 1990. Biofilms. JohnWiley & Sons, New York: 796 pp.

    Google Scholar 

  • Cloete, T. E. & N. Y. O. Muyima, 1997. Microbial Community Analysis: the Key to Design of Biological Wastewater Treatment Systems. IAWQ Scientific and Technical Report No. 5. University Press, Cambridge: 98 pp.

    Google Scholar 

  • DrLange, 1992. Handbook of Photometrical Operation Analysis. Dr Bruno Lange GmbH, Berlin: 323 pp.

    Google Scholar 

  • Emori, H., K. Mikawa, M. Hamaya, T. Yamaguchi, K. Tanaka & T. Takeshima, 1996. Pegasus. Innovative biological nitrogen removal process using entrapped nitrifiers. In Wijffels, R. H., R. M. Buitelaar, C. Bucke & J. Tramper (eds), Immobilized Cells: Basics and Applications. Elsevier Science Publishers, Amsterdam: 546–555.

    Google Scholar 

  • Gujer, W., M. Henze, T. Mino & M. van Loosdrecht, 1999. Activated sludge model no. 3. Wat. Sci. Technol. 39: 183–193.

    Google Scholar 

  • Henze, M., W. Gujer, T. Mino, T. Matsuo, M. C. Wentzel & G. v. R. Marais, 1995. Activated Sludge Model No. 2. IAWQ Scientific and Technical Report No. 3. IAWQ, London: 32 pp.

    Google Scholar 

  • Henze, M., P. Harremoës, J. la Cour Jansen & E. Arvin, 1997. Wastewater Treatment. Biological and Chemical Processes. Springer-Verlag, Berlin Heidelberg: 383 pp.

    Google Scholar 

  • Herzberg, S., E. Moen, C. Vogelsang & K. Østgaard, 1995. Mixed photo-crosslinked polyvinyl alcohol and calcium-alginate gels for cell entrapment. Appl. Microbiol. Biotechnol. 43: 10–17.

    Google Scholar 

  • Klein, J. & F. Wagner, 1978. Immobilized whole cells. In Behrens, D. & K. Fischbeck (eds), Biotechnology. Proceedings of the First European Congress on Biotechnology, 25–29 September 1978 (Dechema Monographien No. 82). Verlag Chemie, Weinheim: 142–164.

    Google Scholar 

  • Kyosai, S. & M. Takahashi, 1996. Application of new wastewater treatment technologies developed by the Biofocus WT project. WQI Water Quality International Sept./Oct.: 27–30.

  • Leenen, E. J. T. M., V. A. P. M. Dos Santos, K. C. F. Grolle, J. Tramper & R. H. Wijffels, 1996. Characteristics of and selection criteria for cell immobilization in wastewater treatment. Wat. Res. 30: 2985–2996.

    Google Scholar 

  • Mobarry, B. K., M. Wagner, V. Urbain, B. E. Rittmann & D. A. Stahl, 1996. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62: 2156–2162.

    Google Scholar 

  • Murray, R. G. E. & S. W. Watson, 1965. Structure of Nitrosocystis oceanus and comparison with Nitrosomonas and Nitrobacter. J. Bacteriol. 89: 1594–1609.

    Google Scholar 

  • Oerther, D. B., F. L. de los Reyes & L. Raskin, 1999. Interfacing phylogenetic oligonucleotide probe hybridisation with representation of microbial populations and specific growth rates in mathematical models of activated sludge processes. Wat. Sci. Technol. 39: 11–20.

    Google Scholar 

  • Østgaard, K., N. Lee & T. Welander, 1994. Nitrification at low temperatures. In Second International Symposium on Environmental Biotechnology. Brighton 4–6 July 1994. Institution of Chemical Engineers, Rugby: 134–137.

    Google Scholar 

  • Picioreanu, C., M. C. M. van Loosdrecht & J. J. Heijnen, 1997. Modelling the effect of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Wat. Sci. Technol. 36: 147–156.

    Google Scholar 

  • Picioreanu, C., M. C. M. van Loosdrecht & J. J. Heijnen, 1998. A new combined differential-discrete cellular automaton approach for biofilm modelling: application for growth in gel beads. Biotechnol. Bioeng. 57: 718–731.

    Google Scholar 

  • Picioreanu, C., M. C. M. van Loosdrecht & J. J. Heijnen, 1999. Discrete-differential modelling of biofilm structure. Wat. Sci. Technol. 39: 115–122.

    Google Scholar 

  • Schaechter, M. O., O. Maaloe & N. O. Kjeldgaard, 1958. Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J. Gen. Microbiol. 19: 592–606.

    Google Scholar 

  • Schramm, A., D. De Beer, H. van den Heuvel, S. Ottengraf & R. Amann, 1998a. In situ structure/function studies in waste-water treatment systems. Wat. Sci. Technol. 37: 413–416.

    Google Scholar 

  • Schramm, A., D. De Beer, M. Wagner & R. Amann, 1998b. Identification and activity in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl. Environ. Microbiol. 64: 3480–3485.

    Google Scholar 

  • Smidsrød, O. & G. Skjåk–Bræk, 1990. Alginate as immobilization matrix for cells. Trends Biotechnol. 3: 71–78.

    Google Scholar 

  • Stahl, D. A. & R. Amann, 1991. Development and application of nucleic acid probes. In Stackebrandt E. & M. Goodfellow (eds), Sequencing and Hybridization Techniques in Bacterial Systematics. John Wiley & Sons, Chichester: 205–248.

    Google Scholar 

  • Stahl, D. A., 1997. Molecular approaches for the measurement of density, diversity, and phylogeny. In Hurst, C. J., G. R. Knudsen, M. J. McInerney, L. D. Stetzenbach & M. V. Walter (eds), Manual of Environmental Microbiology. American Society for Microbiology Press, Washington DC: 102–114.

    Google Scholar 

  • Tanaka, K., T. Sumino, H. Nakamura, T. Ogasawara & H Emori, 1996. Application of nitrification by cells immobilized in polyethylene glycol. In Wijffels R. H., R. M. Buitelaar, C. Bucke & J. Tramper (eds), Immobilized Cells: Basics and Applications. Elsevier Science B. V., Amsterdam: 622–632.

    Google Scholar 

  • Vogelsang, C. & K. Østgaard, 1996. Stability of alginate gels applied for cell entrapment in open systems. In Wijffels, R. H., R. M. Buitelaar, C. Bucke & J. Tramper (eds), Immobilized Cells: Basics and Applications. Elsevier Science B. V., Amsterdam: 213–219.

    Google Scholar 

  • Vogelsang, C., A. Husby & K. Østgaard, 1997. Functional stability of temperature-compensated nitrification in domestic wastewater treatment obtained with PVA-SbQ/alginate gel entrapment. Wat. Res. 31: 1659–1664.

    Google Scholar 

  • Vogelsang, C., K. Gollembiewski & K. Østgaard, 1999. Effect of preservation techniques on the regeneration of gel entrapped nitrifying sludge. Wat. Res. 33: 164–168.

    Google Scholar 

  • Vogelsang, C., R. H. Wijffels & K. Østgaard, 2000. Rheological properties and mechanical stability of new gel-entrapment systems applied in bioreactors. Biotechnol. Bioeng. 70: 247–253.

    Google Scholar 

  • Wagner, M., B. Assmus, A. Hartmann, P. Hutzler & R. Amann, 1995. In situ analysis of microbial consortia in activated sludge using fluorescently labelled, rRNA-targeted oligonucleotide probes and confocal scanning laser microscopy. J. Microsc. 176: 181–187.

    Google Scholar 

  • Wagner, M., G. Rath, R. Amann, H.-P. Koops & K.-H. Schleifer, 1995. In situ identification of ammonia-oxidizing bacteria. System. Appl. Microbiol. 18: 251–264.

    Google Scholar 

  • Wagner, M., G. Rath, H.-P. Koops, J. Flood & R. Amann, 1996. In situ analysis of nitrifying bacteria in sewage treatment plants. Wat. Sci. Technol. 34: 237–244.

    Google Scholar 

  • Wagner, M. & R. Amann, 1997. Molecular techniques for determining microbial community structures in activated sludge. In Cloete T. E. & N. Y. O. Muyima (eds), Microbial Community Analysis: The Key to Design of Biological Waste-water Treatment Systems. IAWQ Scientific and Technical Report No. 5, University Press, Cambridge: 61–72.

    Google Scholar 

  • Watson, S. W., 1971. Reisolation of Nitrosospira briensis S. Winogradsky & H. Winogradsky 1933. Arch.Mikrobiol. 75: 179–188.

    Google Scholar 

  • Watson, S. W. & M. Mandel, 1971. Comparison of the morphology and deoxyribonucleic acid composition of 27 strains of nitrifying bacteria. J. Bacteriol. 107: 563–569.

    Google Scholar 

  • Wiesmann, U., 1994. Biological nitrogen removal from wastewater. In Fiechter, A. (ed.), Advances in Biochemical Engineering / Biotechnology. Springer-Verlag, Berlin 51: 113–154.

    Google Scholar 

  • Wijffels, R. H. & J. Tramper, 1995. Nitrification by immobilized cells. Enzyme Microb. Technol. 17: 482–492.

    Google Scholar 

  • Wijffels R. H., R. M. Buitelaar, C. Bucke & J. Tramper (eds), 1996. Immobilized Cells: Basics and Applications. Elsevier Science Publishers, Amsterdam: 864 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kjetill Østgaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogelsang, C., Schramm, A., Picioreanu, C. et al. Microbial community analysis by FISH for mathematical modelling of selective enrichment of gel-entrapped nitrifiers obtained from domestic wastewater. Hydrobiologia 469, 165–178 (2002). https://doi.org/10.1023/A:1015598704990

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015598704990

Navigation