Skip to main content
Log in

Alfvén wave coupling in the auroral current circuit

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Auroral phenomena are controlled by the geomagnetic field.Since the terrestrial field lines connect the auroral oval to the equatorial region at large distances, the collisionless plasma in this remote space environment can act as a power supply for the high-latitude upper atmosphere where auroral emissions take place. The coupling process is intimately linked to currents which flow across the local magnetic field direction both in the equatorial part and at the atmospheric end of the auroral field lines. These two auroral key regions are connected through currents flowing along the terrestrial field lines, thereby completing the auroral current circuit. Such field-aligned currents are carried by Alfvén waves, that is, magnetohydrodynamic shear waves, which are thus a means to exchange momentum and energybetween rather remote parts of the geomagnetically controlledspace environment. Auroral dynamics is further affected by a third key region in the auroral current circuit, namely the auroral acceleration region, where parallel electric fields accelerate particle to keV energies. This review focuses on key region coupling through Alfvén waves. Continuity requirements for currents and electric fields provide a convenient means to describe the interaction of Alfvén waves with different plasma regimes. Basic coupling aspects can be demonstrated with the help of a simplified model. Inhomogeneities and nonlinear feedback can lead to resonance effects and instabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfvén, H.: 1950, Cosmical Electrodynamics, Clarendon, Oxford.

    Google Scholar 

  • Axford, W.I. and Hines, C.O.: 1961, A unifying theory of high-latitude geophysical phenomena andgeomagnetic storms, Can. J. Phys. 39, 1433.

    Google Scholar 

  • Barnes C., Hudson M.K., and Lotko W.: 1985, Weak double layers in ion acoustic turbulence, Phys.Fluids 28, 1055.

    Google Scholar 

  • Baumjohann, W. and Glassmeier, K.-H.: 1984, The transient response mechanism and Pi2 pulsations at substorm onset - review and outlook, Planet. Space Sci. 32, 1361.

    Google Scholar 

  • Baumjohann, W. and Treumann, R.A.: 1997, Basic Space Plasma Physics, Imperial College Press, London.

    Google Scholar 

  • Block, L.P.: 1972, Potential double layers in the ionosphere, Cosmic Electrodynamis 3, 349.

    Google Scholar 

  • Block, L.P. and Fälthammar, C.G.: 1990, The role of magnetic field aligned electric fields in auroral acceleration, J. Geophys. Res. 95, 5877.

    Google Scholar 

  • Boehm, M.H., Carlson, C.W., McFadden, J.P., Clemmons, J.H., and Mozer, F.S.: 1990, Highresolution sounding rocket observations of large-amplitude Alfvén waves, J. Geophys. Res. 95, 12157.

    Google Scholar 

  • Boehm, M.H., Paschmann, G., Clemmons, J., Haerendel, G., Eliasson L., Lundin R.: 1994, Freja observations of narrow inverted-V electron precipitation by the two-dimensional spectrometer, Geophys. Res. Lett. 21, 1895.

    Google Scholar 

  • Borovsky, J.E.: 1993, Auroral arc thickness as predicted by various theories, J. Geophys. Res. 98, 6101.

    Google Scholar 

  • Borovsky, J.E.: 1998, Still in the dark, Nature 393, 312.

    Google Scholar 

  • Boström, R., Gustafsson, G., Holback, B., Holmgren, G., Koskinen, H., and Kintner, P.: 1988, Characteristics of solitary waves and weak double layers in the magnetospheric plasma, Phys. Rev. Lett. 61, 82.

    Google Scholar 

  • Carlson, C.W., Pfaff, R.F., and Watzin, J.G.: 1998a, The Fast Auroral SnapshoT (FAST) mission, Geophys. Res. Lett. 25, 2013.

    Google Scholar 

  • Carlson, C.W., McFadden, J.P., Ergun, R.E., Temerin, M., Peria, W., Mozer, F.S., Klumpar, D.M., Shelley, E.G., Peterson, W.K., Möbius, E., Elphic, R., Strangeway, R., Cattell, C., and Pfaff, R.: 1998b, FAST observations in the downward auroral current region: Energetic upgoing electron beams, parallel potential drops, and ion heating, Geophys. Res. Lett. 25, 2017.

    Google Scholar 

  • Carovillano, R.L. and Forbes, J.M. (eds.): 1983, Solar-terrestrial physics, D. Reidel, Dordrecht.

    Google Scholar 

  • Chiu, Y.T. and Cornwall, J.M.: 1980, Electrostatic model of a quiet auroral arc, J. Geophys. Res. 85, 543.

    Google Scholar 

  • Chiu, Y.T. and Schulz, M.: 1978, Self-consistent particle and parallel electrostatic field distributions in the magnetospheric-ionospheric auroral region, J. Geophys. Res. 83, 629.

    Google Scholar 

  • Cowley, S.W.H.: 1982, The causes of convection in the Earth's magnetosphere: A review of developments during the IMS, Rev. Geophys. Space Phys. 20, 531.

    Google Scholar 

  • Cummings, W.D. and Dessler, A.J.: 1967, Field-aligned currents in the magnetosphere, J. Geophys. Res. 72, 1007.

    Google Scholar 

  • Dungey, J.W.: 1961, Interplanetary magnetic fields and the auroral zones, Phys. Rev. Lett. 6, 47.

    Google Scholar 

  • Eather, R.: 1980, Majestic Lights, AGU, Washington, D.C.

    Google Scholar 

  • Elphic, R.C., Bonnell, J.W., Strangeway, R.J., Kepko, L., Ergun, R.E., McFadden, J.P., Carlson, C.W., Peria, W., Cattell, C.A., Klumpar, D., Shelley, E., Peterson, W., Moebius, E., Kistler, L., and Pfaff, R.: 1998, The auroral current circuit and field-aligned currents observed by FAST, Geophys. Res. Lett. 25, 2033.

    Google Scholar 

  • Elphinstone, R.D., Murphee, J.S., and Cogger, L.L.: 1996, What is a global auroral substorm?, Rev. Geophys. 34, 169.

    Google Scholar 

  • Ergun, R.E., Carlson, C.W., McFadden, J.P., Mozer, F.S., Delroy, G.T., Peria, W., Chaston, C.C., Temerin, M., Elphic, R., Strangeway, R., Pfaff, R., Cattell, C.A., Klumpar, D., Shelley, E., Peterson, W., Möbius, E., and Kistler, L.: 1998, FAST satellite observations of electric field structures in the auroral zone, Geophys. Res. Lett. 25, 2025–2028.

    Google Scholar 

  • Eriksson, A.I., Holback, B., Dovner, P.O., Boström, R., Holmgren, G., André, M., Eliasson, L., and Kintner, P.M.: 1994, Freja observations of correlated small-scale density depletions and enhanced lower hybrid waves, Geophys. Res. Lett. 21, 1843.

    Google Scholar 

  • Frank, L.A. and Ackerson, K.L.: 1971, Observation of charged particle precipitation in the auroral zone, J. Geophys. Res. 76, 3612.

    Google Scholar 

  • Frey, H.U., Haerendel, G., Clemmons, J.H., Boehm, M.H., Vogt, J., Bauer, O.H., Wallis, D.D., Blomberg, L., and Lühr, H.: 1998, Freja and ground-based analysis of inverted-V events, J. Geophys. Res. 103, 4303.

    Google Scholar 

  • Frey H.U., Haerendel G., Clemmons J., Wallis D.D., Vogt J., Bauer O.H., Rieger E., Boehm M.H., and Lühr H.: 1996, Studies of auroral arcs using Freja satellite and ground-based data, Adv. Space Res. 18, 8107.

    Google Scholar 

  • Fridman, M. and Lemaire, J.: 1980, Relationship between auroral electron fluxes and field aligned electric potential differences, J. Geophys. Res. 85, 664.

    Google Scholar 

  • Giovanelli, R.G.: 1946, A theory of chromospheric flares, Nature 158, 81.

    Google Scholar 

  • Glassmeier, K.-H.: 1983, Reflection of MHD-waves in the Pc4-5 period range at ionospheres with non-uniform conductivity distributions, Geophys. Res. Lett. 10, 678.

    Google Scholar 

  • Glassmeier, K.-H.: 1984, On the influence of ionospheres with non-uniform conductivity distributions on hydromagnetic waves, J. Geophys. 54, 125.

    Google Scholar 

  • Glassmeier, K.-H., Volpers, H., and Baumjohann, W.: 1984, Ionospheric Joule dissipation as a damping mechanism for high latitude ULF pulsations: Observational evidence, Planet. Space Sci. 32, 1463.

    Google Scholar 

  • Glassmeier, K.-H.: 1995, ULF pulsations, Handbook of Atmospheric Electrodynamics. H. Volland pp. 463–502 CRC PressBoca Raton, Fla.

    Google Scholar 

  • Glassmeier, K.-H., Othmer, C., Cramm, R., Stellmacher, M., and Engebretson, M.: 1999, Magnetospheric field line resonances: A comparative planetology approach, Surv. Geophys. 20, 61.

    Google Scholar 

  • Goertz, C.K.: 1979, Double layers and electrostatic shocks in space, Rev. Geophys. Space Phys. 17, 418.

    Google Scholar 

  • Goertz, C.K. and Boswell, R.W.: 1979, Magnetosphere-ionosphere coupling, J. Geophys. Res. 84, 7239.

    Google Scholar 

  • Haerendel, G.: 1983, An Alfén wave model of auroral arcs, in B. Hultquist B and T. Hagfors (eds.), High-Latitude Space Plsma Physics, Plenum, New York, p. 515.

    Google Scholar 

  • Haerendel, G.: 1989, Cosmic linear accelerators, Proc. Varenna-Abastumani Intern. School Workshop on Plasma Astrophysics, Varenna 1988, ESA SP-285, Vol. I, p. 37.

    Google Scholar 

  • Haerendel, G.: 1990, Field-aligned currents in the Earth's magnetosphere, in C.T. Russell, E.R. Priest, and L.C. Lee (eds.), Physics of Magnetic Flux Ropes, AGU, Washington, D.C., p. 539.

    Google Scholar 

  • Haerendel, G., Hedgecock, P.C., and Akasofu, S.-I.: 1971, Evidence for magnetic field aligned currents during the substorms of March 18, 1969, J. Geophys. Res. 76, 2382.

    Google Scholar 

  • Hallinan, T.J., and Davis, T.N.: 1970, Small-scale auroral arc distortions, Planet. Space Sci. 18, 1735.

    Google Scholar 

  • Hasegawa, A.: 1976, Particle acceleration by MHD surface wave and formation of aurora, J. Geophys. Res. 81, 5083.

    Google Scholar 

  • Hill, T.: 1983, Solar-wind magnetosphere coupling, in R.L. Carovillano and J.M. Forbes (eds.), Solarterrestrial physics, D. Reidel, Dordrecht, pp. 261–302.

    Google Scholar 

  • Hughes, W.J.: 1974, The effect of the atmosphere and ionosphere on long-period magnetospheric micropulsations, Planet. Space Sci. 22, 1157.

    Google Scholar 

  • Iijima, T., and Potemra, T.A.: 1976a, The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad, J. Geophys. Res. 81, 2185.

    Google Scholar 

  • Iijima, T., and Potemra, T.A.: 1976b, Field-aligned currents in the dayside cusp observed by Triad, J. Geophys. Res. 81, 5971.

    Google Scholar 

  • Kamide, Y. and Baumjohann, W.: 1993, Magnetosphere-ionosphere coupling, Springer, Berlin.

    Google Scholar 

  • Kamide, Y., Baumjohann, W., Daglis, I.A., Gonzalez, W.D., Grande, M., Joselyn, J.A., McPherron, R.L., Phillips, J.L., Reeves, E.G.D., Rostoker, G., Sharma, A.S., Singer, H.J., Tsurutani, B.T., and Vasyliunas, V.M.: 1998, Current understanding of magnetic storms: Storm-substorm relationships, J. Geophys. Res. 103, 17705.

    Google Scholar 

  • Kan, J.R., and Sun, W.: 1985, Simulations of the westward traveling surge and Pi2 pulsations during substorms, J. Geophys. Res. 90, 10911.

    Google Scholar 

  • Karlsson, T., and Marklund, G.T.: 1996, A statistical study of intense low-altitude electric fields observed by Freja, Geophys. Res. Lett. 23, 1005.

    Google Scholar 

  • Kelley, M.C.: 1989, The Earth's Ionosphere, Academic Press, Inc.

  • Kindel, J.M. and Kennel, C.F.: 1971, Topside current instabilities, J. Geophys. Res. 76, 3055.

    Google Scholar 

  • Kivelson, M.G. and Russell, C.T. (eds.): 1995, Introduction to Space Physics, Cambridge University Press.

  • Knight, S.: 1973, Parallel electric fields, Planet. Space Sci. 21, 741.

    Google Scholar 

  • Lemaire, J. and Scherer, M.: 1973, Plasma sheet particle precipitation: a kinetic model, Planet. Space Sci. 21, 281.

    Google Scholar 

  • Lotko, W. and C.F. Kennel: 1983, Spiky ion acoustic waves in collisionless auroral plasma, J. Geophys. Res. 88, 381.

    Google Scholar 

  • Lotko, W., Sonnerup, B.U.Ö, and Lysak, R.L.: 1987, Nonsteady boundary layer flow including ionospheric drag and parallel electric fields, J. Geophys. Res. 92, 8635.

    Google Scholar 

  • Louarn, P., Wahlund, J.-E., Chust, T., deFeraudy, H., Roux, A., Holback, B., Dovner, P.O., Eriksson, A.I., and Holmgren, G.: 1994, Observation of kinetic Alfvén waves by the Freja spacecraft, Geophys. Res. Lett. 21, 1847.

    Google Scholar 

  • Lundin, R., Haerendel, G., Grahn, S.: 1994, The Freja project, Geophys. Res. Lett. 21, 1823.

    Google Scholar 

  • Lyons, L.R.: 1980, Generation of large-scale regions of auroral currents, electric potentials, and precipitation by the divergence of the convection electric field, J. Geophys. Res. 85, 17.

    Google Scholar 

  • Lyons, L.R., Evans, D.S., and Lundin, R.: 1979, An observed relationship between magnetic fieldaligned electric fields and downward electron energy fluxes in the vicinity of auroral forms, J. Geophys. Res. 84, 457.

    Google Scholar 

  • Lysak, R.L.: 1985, Auroral electrodynamics with current and voltage generators, J. Geophys. Res. 90, 4178.

    Google Scholar 

  • Lysak, R.L.: 1986, Coupling of the dynamic ionosphere to auroral flux tubes, J. Geophys. Res. 91, 7047.

    Google Scholar 

  • Lysak, R.L.: 1988, Theory of auroral zone PiB pulsation spectra, J. Geophys. Res. 93, 5942.

    Google Scholar 

  • Lysak, R.L.: 1990, Electrodynamic coupling of the magnetosphere and ionosphere, Space Sci. Rev. 52, 33.

    Google Scholar 

  • Lysak, R.L.: 1991, Feedback instability of the ionospheric resonant cavity, J. Geophys. Res. 96, 1553.

    Google Scholar 

  • Lysak, R.L. and Carlson, C.W.: 1981, Effect of microscopic turbulence on magnetosphere-ionosphere coupling, Geophys. Res. Lett. 8, 269.

    Google Scholar 

  • Lysak, R.L., and Dum, C.T.: 1983, Dynamics of magnetosphere-ionosphere coupling including turbulent transport, J. Geophys. Res. 88, 365.

    Google Scholar 

  • Lysak, R.L., and Hudson, M.K.: 1979, Coherent anomalous resistivity in the region of electrostatic shocks, Geophys. Res. Lett. 6, 661.

    Google Scholar 

  • Lysak, R.L., and Hudson, M.K.: 1987, Effect of double layers on magnetosphere-ionosphere coupling, Laser Part. Beams 5, 351.

    Google Scholar 

  • Lysak, R.L. and Lotko, W.: 1996, On the kinetic dispersion relation for shear Alfvén waves, J. Geophys. Res. 101, 5085.

    Google Scholar 

  • Lysak, R.L. and Song, Y.: 2000, The role of Alfvén waves in the formation of auroral parallel electric fields, in S.-i. Ohtani, R. Fujii, M. Hesse, and R.L. Lysak (eds.), Magnetospheric Current Systems, Geophys. Monogr., vol. 118, pp. 147–155, AGU, Washington, D.C.

    Google Scholar 

  • Marklund, G., Blomberg, L., Fälthammar, C.-G., Lindqvist, P.-A.,and Eliasson, L.: 1995, On the occurence and characteristics of intense low-altitude electric fields observed by Freja, Ann. Geophysicae 13, 704.

    Google Scholar 

  • McFadden, J.P., Carlson, C.W., and Ergun, R.E.: 1999, Microstructure of the auroral acceleration region as observed by FAST, J. Geophys. Res. 104, 14453.

    Google Scholar 

  • McIlwain, C.E.: 1960, Direct measurements of particles producing visible auroras, J. Geophys. Res. 65, 2727.

    Google Scholar 

  • Mozer, F.S., Carlson, C.W., Hudson, M.K., Torbert, R.B., Parady, B., Yatteau, J., and Kelley, M.C.: 1977, Observations of paired electrostatic shocks in the polar magnetosphere, Phys. Rev. Lett. 38, 292.

    Google Scholar 

  • Mozer, F.S., Cattell, C.A., Hudson, M.K., Lysak, R.L., Temerin, M., and Torbert, R.B.: 1980, Satellite measurements and theories of auroral particle acceleration, Space Sci. Rev. 27, 155.

    Google Scholar 

  • Newcomb, W.A.: 1958, Motion of magnetic lines of force, Ann. Phys. 3, 347.

    Google Scholar 

  • Newell, P.T., Meng, C.I., and Wing, S.: 1998, Relation to solar activity of intense aurorae in sunlight and darkness, Nature 393, 342.

    Google Scholar 

  • Northrop, T.G.: 1963, The Adiabatic Motion of Charged Particles, Wiley-Interscience, New York.

    Google Scholar 

  • Papadopoulos, K.: 1977, A review of anomalous resistivity for the ionosphere, Rev. Geophys. Space Phys. 15, 113.

    Google Scholar 

  • Parks, G.K.: 1991, Physics of Space Plasmas: An Introduction, Addison-Wesley, Redwood City, CA.

    Google Scholar 

  • Persoon, A.M., Gurnett, D.A., Peterson, W.K., Waite, Jr., J.H., Burch, J.L., and Green, J.L.: 1988, Electron density depletions in the nightside auroral zone, J. Geophys. Res. 93, 1871.

    Google Scholar 

  • Pierrard, V.: 1996, New model of magnetospheric current-voltage relationship, J. Geophys. Res. 101, 2669.

    Google Scholar 

  • Potemra, T.A.: 1985, Field-aligned (Birkeland) currents, Space Sci. Rev. 42, 295.

    Google Scholar 

  • Prakash, M. and Lysak, R.L.: 1992, Resistivity due to weak double layers: A model for auroral arc thickness, Geophys. Res. Lett. 19, 2159.

    Google Scholar 

  • Reiff, P.H.: 1984, Model of auroral zone conductances, in T.A. Potemra (ed.), Magnetospheric Currents, Geophys. Monogr., vol. 28, pp. 180–191, AGU, Washington, D.C.

    Google Scholar 

  • Rönnmark, K.: 1999, Electron acceleration in the auroral current circuit, Geophys. Res. Lett. 26, 983.

    Google Scholar 

  • Rothwell, P.L., Silevitch, M.B. and Block, L.P.: 1984, A model for the propagation of the westward traveling surge, J. Geophys. Res. 89, 8941.

    Google Scholar 

  • Sakanoi, T., Fukunishi, H., and Mukai, T.: 1995, Relationship between field-aligned currents and inverted-V parallel potential drops observed at midaltitudes, J. Geophys. Res. 100, 19343.

    Google Scholar 

  • Sato, T.: 1978, A theory of quiet auroral arcs, J. Geophys. Res. 83, 1042.

    Google Scholar 

  • Sato, T. and Holzer, T.E.: 1973, Quiet auroral arcs and electrodynamic coupling between the ionosphere and the magnetosphere, J. Geophys. Res. 78, 7314. J. Geophys. Res.787314-7329

    Google Scholar 

  • Scholer, M.: 1970, On the motion of artificial ion clouds in the magnetosphere, Planet. Space Sci. 18, 977.

    Google Scholar 

  • Seyler, C.E.: 1988, Nonlinear 3-D evolution of bounded kinetic Alfvén waves due to shear flow and collisionless tearing instabilities, Geophys. Res. Lett. 15, 756.

    Google Scholar 

  • Siscoe, G.L.: 1983, Solar system magnetohydrodynamics, in R.L. Carovillano and J.M. Forbes (eds.), Solar-terrestrial physics, D. Reidel, Dordrecht, pp. 11–100.

    Google Scholar 

  • Sonnerup, B.U.Ö: 1980, Theory of the low-latitude boundary layer, J. Geophys. Res. 85, 2017.

    Google Scholar 

  • Southwood, D.J.: 1974, Some features of field line resonances in the magnetosphere, Planet. Space Sci. 22, 483.

    Google Scholar 

  • Stasiewicz, K., Bellan, P., Chaston, C., Kletzing, C., Lysak, R., Maggs, J., Pokhotelov, O., Seyler, C., Shukla, P., Stenflo, L., Strelsov, A., and Wahlund, J.-E.: 2000a, Small scale Alfvénic structure in the aurora, Space Sci. Rev. 92, 423.

    Google Scholar 

  • Stasiewicz, K., Khotyaintsev, Y., Berthomier, M., and Wahlund, J.-E.: 2000b, Identification of widespread turbulence of dispersive Alfvén waves, Geophys. Res. Lett. 27, 173.

    Google Scholar 

  • Strangeway, R.J., Kepko, L., Elphic, R.C., Carlson, C.W., Ergun, R.E., McFadden, J.P., Peria, W.J., Delroy, G.T., Chaston, C.C., Temerin, M., Cattell, C.A., Möbius, E., Kistler, L.M., Klumpar, D.M., Peterson, W.K., Shelley, E.G., and Pfaff, R.F.: 1998, FAST observations of VLF waves in the auroral zone: Evidence of very low plasma densities, Geophys. Res. Lett. 25, 2065.

    Google Scholar 

  • Strelsov, A.V., and Lotko, W.: 1995, Dispersive field line resonances on auroral field lines, J. Geophys. Res. 100, 19,457.

    Google Scholar 

  • Strelsov, A.V., Lotko, W., Johnson, J.R., and Cheng, C.Z.: 1998, Small-scale, dispersive field line resonances in the hot magnetospheric plasma, J. Geophys. Res. 103, 26,559.

    Google Scholar 

  • Tamao, T.: 1965, Transmission and coupling resonance of hydromagnetic disturbances in the nonuniform Earth's magnetosphere, Sci. Rept. Tohoku Univ., Series 5, Geophysics, 17(2), 43.

    Google Scholar 

  • Temerin, M., and Carlson, C.W.: 1998, Current-voltage relationship in the downward current region, Geophys. Res. Lett. 25, 2365.

    Google Scholar 

  • Temerin, M., Cerny, K., Lotko, W., and Mozer, F.S.: 1982, Observations of double layers and solitary waves on auroral zone field lines, Phys. Rev. Lett. 48, 1175.

    Google Scholar 

  • Trakhtengertz, V.Y. and Feldstein, A.Y.: 1984, Quiet auroral arcs: ionospheric effect of magnetospheric convection stratification, Planet. Space Sci. 32, 127.

    Google Scholar 

  • Trakhtengertz, V.Y. and Feldstein, A.Y.: 1991, Turbulent Alfvén boundary layer in the polar ionosphere, J. Geophys. Res. 96, 9363.

    Google Scholar 

  • Treumann, R.A. and Baumjohann, W.: 1997, Advanced Space Plasma Physics, Imperial College Press, London.

    Google Scholar 

  • Trondsen, T.S.: 1999, High Spatial and Temporal Resolution Auroral Imaging, Dissertation, Univ. Tromsø, Tromsø, Norway.

    Google Scholar 

  • Trondsen, T.S., and Cogger, L.L.: 1997, Asymmetric multiple auroral arcs and inertial Alfvén waves, Geophys. Res. Lett. 24, 2945.

    Google Scholar 

  • Untiedt, J. and Baumjohann, W.: 1993, Studies of polar current systems using the IMS Scandinavian magnetometer array, Space Sci. Rev. 63, 245.

    Google Scholar 

  • Vasyliunas, V.M.: 1970, Mathematical models of magnetospheric convection and its coupling to the ionosphere, in B.M. McCormac (ed.), Particles and Fields in the Magnetosphere, Reidel, Dordrecht, pp. 60–71.

    Google Scholar 

  • Vasyliunas, V.M.: 1984, Fundamentals of current description, in T.A. Potemra (ed.), Magnetospheric Currents, AGU, Washington, D.C., pp. 63–66.

    Google Scholar 

  • Vogt, J.: 1997, Elektrodynamische Kopplung von polarer Ionosphäre und äquatorialer Magnetosphäre, Dissertation, Techn. Univ. Braunschweig, Braunschweig, Germany.

    Google Scholar 

  • Vogt, J., and Haerendel, G.: 1998, Reflection and transmission of Alfvén waves at the auroral acceleration region, Geophys. Res. Lett. 25, 277.

    Google Scholar 

  • Vogt, J., Haerendel, G., and Glassmeier, K.-H.: 1999a, A model for the reflection of Alfvén waves at the source region of the Birkeland current system: the tau generator, J. Geophys. Res. 104, 269.

    Google Scholar 

  • Vogt, J., Frey, H.U., Haerendel, G., Höfner, H., and Semeter, J.L.: 1999b, Shear velocity profiles associated with auroral curls, J. Geophys. Res. 104, 17277.

    Google Scholar 

  • Wahlund, J.-E., Louarn, P., Chust, T., deFeraudy, H., Roux, A., Holback, B., Dovner, P.O., and Holmgren, G.: 1994, On ion acoustic turbulence and the nonlinear evolution of kinetic Alfvén waves in aurora, Geophys. Res. Lett. 21, 1831.

    Google Scholar 

  • Watanabe, T.W., Oya, H., Watanabe, K., and Sato, T.: 1993, Comprehensive simulation study on local and global development of auroral arcs and field-aligned potentials, J. Geophys. Res. 98, 21391.

    Google Scholar 

  • Weimer D.R., Gurnett D.A., Goertz C.K., Menietti J.D., Burch J.L., and Sugiura M.: 1987, The current-voltage relationship in auroral current sheets, J. Geophys. Res. 92, 187.

    Google Scholar 

  • Wolf, R.A.: 1983, The quasi-static (slow-flow) region of the magnetosphere, in R.L. Carovillano and J.M. Forbes (eds.), Solar-terrestrial physics, D. Reidel, Dordrecht, pp. 303–368.

    Google Scholar 

  • Zmuda, A.J., Martin, J.H., and Heuring, F.T.: 1966, Transverse magnetic disturbances at 1100 kilometers in the auroral region, J. Geophys. Res. 71, 5033.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, J. Alfvén wave coupling in the auroral current circuit. Surveys in Geophysics 23, 335–377 (2002). https://doi.org/10.1023/A:1015597724324

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015597724324

Navigation