Skip to main content
Log in

Galvanostatic and microscopic studies of nodulation during copper electrolysis

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The galvanostatic technique on a laboratory scale has been shown to be a useful tool in detecting the presence of nodules on the cathode during copper electrodeposition by using the value of the starting electrolytic potential and by the presence of a cathodic polarization peak on the potential–time curve. Studying the morphology of the deposit with a scanning electron microscope at various magnifications confirmed the galvanostatic results. It is postulated that inappropriate concentrations and/or ratios of the additives (thiourea, gelatin and chloride ions) are associated with a certain current density that generates intergranular microcracks due to adsorption of the additives and leads to the formation of nodules at the macroscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.F. Suarez and F.A. Olson, J. Appl. Electrochem. 22 (1992) 1002.

    Google Scholar 

  2. E. Ilgar, Ph.D thesis, University of Missouri (1993).

  3. C.T. Wang and T.J. O'Keefe, in P.E. Richardson, S. Srinivasan and R. Woods (Eds), Proceedings of the International Symposium on 'Electrochemistry in Mineral and Metal Processing' (Electrochemical Society Pennington, NJ, 1984) p. 655.

    Google Scholar 

  4. O. Forsen, in Copper '90, 'Refining, Fabrication, Markets' (Institute of Metals, Västeräs, Sweden, 1–3 Oct. (1990), p. 189.

    Google Scholar 

  5. O. Forsen, A. Kotzschmar and A.E. Antila, Galvanotechnick 86 (1995) 3580.

    Google Scholar 

  6. L. Pajdowski, 'Problems and Methods of Coordination Chemistry' (Institute of Chemistry, University of Wroclaw, Wroclaw, Poland, 1981).

    Google Scholar 

  7. R. Winand, Hydrometallurgy 29 (1994) 56.

    Google Scholar 

  8. Z. Gorlich, L. Blaz and A. Diazon, Non Ferrous Ores and Metals 22 (1977) 522.

    Google Scholar 

  9. L. Mirkova, N. Petkova, I. Popova and St. Rashkov, Hydrometallurgy 36 (1994) 201.

    Google Scholar 

  10. H. Fisher, 'Elektrolytische abscheidung und Elektrokristallisation von Metallen' (Springer, Berlin, 1954).

    Google Scholar 

  11. B. Veilleux, A-M. Lafront and E. Ghali, J Appl. Electrochem, in press.

  12. C. De Maere and R. Winand, in W.C. Cooper, D.B. Dreisinger, J.E. Dutrizac, H. Hein and G. Ugarte (Eds), Proc. Copper 95 – Cobre 95 International Conference, Vol. III, 'Electrore.ning and Hydrometallurgy of Copper' (Metallurgical Society of CIM, Montreal, Canada, 1995), p. 267.

    Google Scholar 

  13. T. Pearson and J.K. Dennis, Surf. Coat Technol. 42 (1990) 69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ghali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafront, AM., Veilleux, B. & Ghali, E. Galvanostatic and microscopic studies of nodulation during copper electrolysis. Journal of Applied Electrochemistry 32, 329–337 (2002). https://doi.org/10.1023/A:1015589725641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015589725641

Navigation